北京理工大學《機器學習及醫學圖像分析》2021-2022學年第一學期期末試卷_第1頁
北京理工大學《機器學習及醫學圖像分析》2021-2022學年第一學期期末試卷_第2頁
北京理工大學《機器學習及醫學圖像分析》2021-2022學年第一學期期末試卷_第3頁
北京理工大學《機器學習及醫學圖像分析》2021-2022學年第一學期期末試卷_第4頁
北京理工大學《機器學習及醫學圖像分析》2021-2022學年第一學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

自覺遵守考場紀律如考試作弊此答卷無效密自覺遵守考場紀律如考試作弊此答卷無效密封線第1頁,共3頁北京理工大學

《機器學習及醫學圖像分析》2021-2022學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在一個推薦系統中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機推薦,增加推薦結果的不確定性,但可能降低相關性B.基于內容的多樣性優化,選擇不同類型的物品進行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結合使用,并根據用戶反饋動態調整2、在一個股票價格預測的場景中,需要根據歷史的股票價格、成交量、公司財務指標等數據來預測未來的價格走勢。數據具有非線性、非平穩和高噪聲的特點。以下哪種方法可能是最合適的?()A.傳統的線性回歸方法,簡單直觀,但無法處理非線性關系B.支持向量回歸(SVR),對非線性數據有一定處理能力,但對高噪聲數據可能效果不佳C.隨機森林回歸,能夠處理非線性和高噪聲數據,但解釋性較差D.基于深度學習的循環神經網絡(RNN)或長短時記憶網絡(LSTM),對時間序列數據有較好的建模能力,但容易過擬合3、假設正在開發一個自動駕駛系統,其中一個關鍵任務是目標檢測,例如識別道路上的行人、車輛和障礙物。在選擇目標檢測算法時,需要考慮算法的準確性、實時性和對不同環境的適應性。以下哪種目標檢測算法在實時性要求較高的場景中可能表現較好?()A.FasterR-CNN,具有較高的檢測精度B.YOLO(YouOnlyLookOnce),能夠實現快速檢測C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實時應用4、在使用深度學習進行圖像分類時,數據增強是一種常用的技術。假設我們有一個有限的圖像數據集。以下關于數據增強的描述,哪一項是不正確的?()A.可以通過隨機旋轉、翻轉、裁剪圖像來增加數據的多樣性B.對圖像進行色彩變換、添加噪聲等操作也屬于數據增強的方法C.數據增強可以有效地防止模型過擬合,但會增加數據標注的工作量D.過度的數據增強可能會導致模型學習到與圖像內容無關的特征,影響模型性能5、假設要對一個大型數據集進行無監督學習,以發現潛在的模式和結構。以下哪種方法可能是首選?()A.自編碼器(Autoencoder),通過重構輸入數據學習特征,但可能無法發現復雜模式B.生成對抗網絡(GAN),通過對抗訓練生成新數據,但訓練不穩定C.深度信念網絡(DBN),能夠提取高層特征,但訓練難度較大D.以上方法都可以嘗試,根據數據特點和任務需求選擇6、在一個圖像分類任務中,如果需要快速進行模型的訓練和預測,以下哪種輕量級模型架構可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG7、某機器學習項目需要對大量的圖像進行分類,但是計算資源有限。以下哪種技術可以在不顯著降低性能的前提下減少計算量?()A.模型壓縮B.數據量化C.遷移學習D.以上技術都可以考慮8、在一個強化學習問題中,如果環境的狀態空間非常大,以下哪種技術可以用于有效地表示和處理狀態?()A.函數逼近B.狀態聚類C.狀態抽象D.以上技術都可以9、在強化學習中,智能體通過與環境進行交互來學習最優策略。假設一個機器人需要在復雜的環境中找到通往目標的最佳路徑,并且在途中會遇到各種障礙和獎勵。在這種情況下,以下哪種強化學習算法可能更適合解決這個問題?()A.Q-learning算法,通過估計狀態-動作值函數來選擇動作B.SARSA算法,基于當前策略進行策略評估和改進C.策略梯度算法,直接優化策略的參數D.以上算法都不適合,需要使用專門的路徑規劃算法10、某機器學習模型在訓練過程中,損失函數的值一直沒有明顯下降。以下哪種可能是導致這種情況的原因?()A.學習率過高B.模型過于復雜C.數據預處理不當D.以上原因都有可能11、機器學習中的算法選擇需要考慮多個因素。以下關于算法選擇的說法中,錯誤的是:算法選擇需要考慮數據的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關于算法選擇的說法錯誤的是()A.對于小樣本數據集,優先選擇復雜的深度學習算法B.對于高維度數據,優先選擇具有降維功能的算法C.對于實時性要求高的任務,優先選擇計算速度快的算法D.對于不平衡數據集,優先選擇對不平衡數據敏感的算法12、當使用樸素貝葉斯算法進行分類時,假設特征之間相互獨立。但在實際數據中,如果特征之間存在一定的相關性,這會對算法的性能產生怎樣的影響()A.提高分類準確性B.降低分類準確性C.對性能沒有影響D.可能提高也可能降低準確性,取決于數據13、在一個深度學習模型的訓練過程中,出現了梯度消失的問題。以下哪種方法可以嘗試解決這個問題?()A.使用ReLU激活函數B.增加網絡層數C.減小學習率D.以上方法都可能有效14、在一個回歸問題中,如果需要考慮多個輸出變量之間的相關性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務學習模型D.以上模型都可以15、考慮一個圖像分割任務,即將圖像分割成不同的區域或對象。以下哪種方法常用于圖像分割?()A.閾值分割B.區域生長C.邊緣檢測D.以上都是16、在使用樸素貝葉斯算法進行分類時,以下關于樸素貝葉斯的假設和特點,哪一項是不正確的?()A.假設特征之間相互獨立,簡化了概率計算B.對于連續型特征,通常需要先進行離散化處理C.樸素貝葉斯算法對輸入數據的分布沒有要求,適用于各種類型的數據D.樸素貝葉斯算法在處理高維度數據時性能較差,容易出現過擬合17、在進行特征選擇時,有多種方法可以評估特征的重要性。假設我們有一個包含多個特征的數據集。以下關于特征重要性評估方法的描述,哪一項是不準確的?()A.信息增益通過計算特征引入前后信息熵的變化來衡量特征的重要性B.卡方檢驗可以檢驗特征與目標變量之間的獨立性,從而評估特征的重要性C.隨機森林中的特征重要性評估是基于特征對模型性能的貢獻程度D.所有的特征重要性評估方法得到的結果都是完全準確和可靠的,不需要進一步驗證18、在一個文本生成任務中,例如生成詩歌或故事,以下哪種方法常用于生成自然語言文本?()A.基于規則的方法B.基于模板的方法C.基于神經網絡的方法,如TransformerD.以上都不是19、在一個圖像分類任務中,模型在訓練集上表現良好,但在測試集上性能顯著下降。這種現象可能是由于什么原因導致的?()A.過擬合B.欠擬合C.數據不平衡D.特征選擇不當20、在進行特征工程時,如果特征之間存在共線性,即一個特征可以由其他特征線性表示,以下哪種方法可以處理共線性?()A.去除相關特征B.對特征進行主成分分析C.對特征進行標準化D.以上都可以21、假設我們有一個時間序列數據,想要預測未來的值。以下哪種機器學習算法可能不太適合()A.線性回歸B.長短期記憶網絡(LSTM)C.隨機森林D.自回歸移動平均模型(ARMA)22、假設正在進行一個特征選擇任務,需要從大量的特征中選擇最具代表性和區分性的特征。以下哪種特征選擇方法基于特征與目標變量之間的相關性?()A.過濾式方法B.包裹式方法C.嵌入式方法D.以上方法都可以23、假設正在研究一個文本生成任務,例如生成新聞文章。以下哪種深度學習模型架構在自然語言生成中表現出色?()A.循環神經網絡(RNN)B.長短時記憶網絡(LSTM)C.門控循環單元(GRU)D.以上模型都常用于文本生成24、在進行自動特征工程時,以下關于自動特征工程方法的描述,哪一項是不準確的?()A.基于深度學習的自動特征學習可以從原始數據中自動提取有意義的特征B.遺傳算法可以用于搜索最優的特征組合C.自動特征工程可以完全替代人工特征工程,不需要人工干預D.自動特征工程需要大量的計算資源和時間,但可以提高特征工程的效率25、在進行機器學習模型部署時,需要考慮模型的計算效率和資源占用。假設我們訓練了一個復雜的深度學習模型,但實際應用場景中的計算資源有限。以下哪種方法可以在一定程度上減少模型的計算量和參數數量?()A.增加模型的層數和神經元數量B.對模型進行量化,如使用低精度數值表示參數C.使用更復雜的激活函數,提高模型的表達能力D.不進行任何處理,直接部署模型26、在進行機器學習模型的訓練時,過擬合是一個常見的問題。假設我們正在訓練一個決策樹模型來預測客戶是否會購買某種產品,給定了客戶的個人信息和購買歷史等數據。以下關于過擬合的描述和解決方法,哪一項是錯誤的?()A.過擬合表現為模型在訓練集上表現很好,但在測試集上表現不佳B.增加訓練數據的數量可以有效地減少過擬合的發生C.對決策樹進行剪枝操作,即刪除一些不重要的分支,可以防止過擬合D.降低模型的復雜度,例如減少決策樹的深度,會導致模型的擬合能力下降,無法解決過擬合問題27、在進行強化學習中的策略優化時,以下關于策略優化方法的描述,哪一項是不正確的?()A.策略梯度方法通過直接計算策略的梯度來更新策略參數B.信賴域策略優化(TrustRegionPolicyOptimization,TRPO)通過限制策略更新的幅度來保證策略的改進C.近端策略優化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進算法,具有更好的穩定性和收斂性D.所有的策略優化方法在任何強化學習任務中都能取得相同的效果,不需要根據任務特點進行選擇28、考慮一個回歸問題,我們要預測房價。數據集包含了房屋的面積、房間數量、地理位置等特征以及對應的房價。在選擇評估指標來衡量模型的性能時,需要綜合考慮模型的準確性和誤差的性質。以下哪個評估指標不僅考慮了預測值與真實值的偏差,還考慮了偏差的平方?()A.平均絕對誤差(MAE)B.均方誤差(MSE)C.決定系數(R2)D.準確率(Accuracy)29、某研究需要對一個大型數據集進行降維,同時希望保留數據的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機鄰域嵌入(t-SNE)D.自編碼器30、在一個多分類問題中,如果類別之間存在層次關系,以下哪種分類方法可以考慮這種層次結構?()A.層次分類B.一對一分類C.一對多分類D.以上方法都可以二、論述題(本大題共5個小題,共25分)1、(本題5分)論述機器學習中的集成學習中的隨機森林與梯度提升決策樹(GBDT)的比較。分析兩者的基本原理、優勢和適用場景,討論在實際應用中如何選擇合適的算法。2、(本題5分)論述機器學習在智能能源消費預測中的應用前景。討論能源需求預測、節能策略制定、智能電表數據分析等方面的機器學習方法和挑戰。3、(本題5分)結合實際應用,論述機器學習在物流供應鏈管理中的作用。分析需求預測、供應商選擇、庫存管理等方面的機器學習技術和應用前景。4、(本題5分)論述在強化學習中,如何利用獎勵塑造(RewardShaping)引導學習過程。研究獎勵塑造對策略收斂和最優性的影響。5、(本題5分)論述深度學習中的優化算法,如隨機梯度下降(SGD)及其變體(Adagrad、Adadelta、Adam等)。分析它們在收斂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論