




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省隴南市2025屆高考考前提分數學仿真卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,2.函數的圖象大致是()A. B.C. D.3.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知全集,函數的定義域為,集合,則下列結論正確的是A. B.C. D.5.某中學有高中生人,初中生人為了解該校學生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.6.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或7.函數的大致圖像為()A. B.C. D.8.雙曲線的漸近線方程是()A. B. C. D.9.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”10.已知定義在上的奇函數滿足,且當時,,則()A.1 B.-1 C.2 D.-211.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.12.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發,需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,若關于的方程有實數解,則實數的取值范圍_____.14.在如圖所示的三角形數陣中,用表示第行第個數,已知,且當時,每行中的其他各數均等于其“肩膀”上的兩個數之和,即,若,則正整數的最小值為______.15.若函數,則使得不等式成立的的取值范圍為_________.16.已知,則=___________,_____________________________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.(1)求橢圓的方程;(2)若過左焦點斜率為的直線與橢圓交于點為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.18.(12分)已知函數,(其中,).(1)求函數的最小值.(2)若,求證:.19.(12分)已知函數(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數的取值范圍;(Ⅲ)若數列的前項和,,求證:數列的前項和.20.(12分)已知各項均為正數的數列的前項和為,且,(,且)(1)求數列的通項公式;(2)證明:當時,21.(12分)已知函數,的最大值為.求實數b的值;當時,討論函數的單調性;當時,令,是否存在區間,,使得函數在區間上的值域為?若存在,求實數k的取值范圍;若不存在,請說明理由.22.(10分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意結合函數的圖象,求出周期,根據周期公式求出,求出,根據函數的圖象過點,求出,即可求得答案【詳解】由函數圖象可知:,函數的圖象過點,,則故選【點睛】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數的周期、最值,代入已知點坐標求出結果2、A【解析】
根據復合函數的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數,所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數的大致圖象的判斷,關鍵在于對復合函數單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數單調性同增異減,屬中檔題.3、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.4、A【解析】
求函數定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數的定義域,還是函數的值域,是不等式的解集還是曲線上的點集,都由代表元決定.5、B【解析】
利用某一層樣本數等于某一層的總體個數乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數等于某一層的總體個數乘以抽樣比,本題是一道基礎題.6、D【解析】
設,,根據和拋物線性質得出,再根據雙曲線性質得出,,最后根據余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質,考查運算求解能力,屬于中檔題.7、D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.8、C【解析】
根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.9、B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.10、B【解析】
根據f(x)是R上的奇函數,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數,即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數,且;∴;∴;∴的周期為4;∵時,;∴由奇函數性質可得;∴;∴時,;∴.故選:B.【點睛】本題考查利用函數的奇偶性和周期性求值,此類問題一般根據條件先推導出周期,利用函數的周期變換來求解,考查理解能力和計算能力,屬于中等題.11、D【解析】
以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點睛】本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數學運算的能力,屬于中檔題.12、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出,從而得函數在區間上為增函數;在區間為減函數.即可得的最大值為,令,得函數取得最小值,由有實數解,,進而得實數的取值范圍.【詳解】解:,當時,;當時,;函數在區間上為增函數;在區間為減函數.所以的最大值為,令,所以當時,函數取得最小值,又因為方程有實數解,那么,即,所以實數的取值范圍是:.故答案為:【點睛】本題考查了函數的單調性,函數的最值問題,導數的應用,屬于中檔題.14、2022【解析】
根據條件先求出數列的通項,利用累加法進行求解即可.【詳解】,,,下面求數列的通項,由題意知,,,,,,數列是遞增數列,且,的最小值為.故答案為:.【點睛】本題主要考查歸納推理的應用,結合數列的性質求出數列的通項是解決本題的關鍵.綜合性較強,屬于難題.15、【解析】
分,兩種情況代入討論即可求解.【詳解】,當時,,符合;當時,,不滿足.故答案為:【點睛】本題主要考查了分段函數的計算,考查了分類討論的思想.16、?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)為定值.過程見解析.【解析】分析:(1)焦距說明,用點差法可得=.這樣可解得,得橢圓方程;(2)若,這種特殊情形可直接求得,在時,直線方程為,設,把直線方程代入橢圓方程,后可得,然后由紡長公式計算出弦長,同時直線方程為,代入橢圓方程可得點坐標,從而計算出,最后計算即可.詳解:(1)由題意可知,設,代入橢圓可得:,兩式相減并整理可得,,即.又因為,,代入上式可得,.又,所以,故橢圓的方程為.(2)由題意可知,,當為長軸時,為短半軸,此時;否則,可設直線的方程為,聯立,消可得,,則有:,所以設直線方程為,聯立,根據對稱性,不妨得,所以.故,綜上所述,為定值.點睛:設直線與橢圓相交于兩點,的中點為,則有,證明方法是點差法:即把點坐標代入橢圓方程得,,兩式相減,結合斜率公式可得.18、(1).(2)答案見解析【解析】
(1)利用絕對值不等式的性質即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結合即可得證.【詳解】(1),當且僅當時取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時,可通過執果索因的方法尋找結論成立的充分條件,完成證明,這就是分析法.19、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調性證明,求出實數的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數.①當時,,故在上為增函數,所以恒成立,故符合題意;②當時,由于,,根據零點存在定理,必存在,使得,由于在上為增函數,故當時,,故在上為減函數,所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導數的幾何意義求出參數及證明不等式成立,借助第二問的證明過程,利用導數的單調性證明數列的不等式,在求解的過程中還要求出數列的和,計算較為復雜,本題屬于難題.20、(1)(2)見證明【解析】
(1)由題意將遞推關系式整理為關于與的關系式,求得前n項和然后確定通項公式即可;(2)由題意結合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數列是以為首項,以為公差的等差數列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關系,求an,常用思路是:一是利用轉化為an的遞推關系,再求其通項公式;二是轉化為Sn的遞推關系,先求出Sn與n之間的關系,再求an.21、(1);(2)時,在單調增;時,在單調遞減,在單調遞增;時,同理在單調遞減,在單調遞增;(3)不存在.【解析】分析:(1)利用導數研究函數的單調性,可得當時,取得極大值,也是最大值,由,可得結果;(2)求出,分三種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數增區間,求得的范圍,可得函數的減區間;(3)假設存在區間,使得函數在區間上的值域是,則,問題轉化為關于的方程在區間內是否存在兩個不相等的實根,進而可得結果.詳解:(1)由題意得,令,解得,當時,,函數單調遞增;當時,,函數單調遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調增②若,而,故,則當時,;當及時,故在單調遞減,在單調遞增.③若,即,同理在單調遞減,在單調遞增(3)由(1)知,所以,令,則對恒成立,所以在區間內單調遞增,所以恒成立,所以函數在區間內單調遞增.假設存在區間,使得函數在區間上的值域是,則,問題轉化為關于的方程在區間內是否存在兩個不相等的實根,即方程在區間內是否存在兩個不相等的實根,令,,則,設,,則對恒成立,所以函數在區間內單調遞增,故恒成立,所以,所以函數在區間內單調遞增,所以方程在區間內不存在兩個不相等的實根.綜上所述,不存在區間,使得函數在區間上的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機電工程發展的學術研究與試題及答案
- 西方國家政治家的人格特征研究試題及答案
- 機電工程考試成功經驗2025年試題及答案
- 軟件開發生命周期管理及試題與答案
- 網絡工程師考試準備技巧與試題及答案
- 西方政治制度與教育科技融合的研究試題及答案
- 機電工程知識傳承與試題及答案總結
- 網絡工程師個案研究試題及答案
- 常見網絡協議解析試題及答案
- 網絡工程師職業發展的外部環境分析試題及答案
- 2023年四川省水電投資經營集團普格電力有限公司招聘筆試題庫含答案解析
- (完整版)高級法學英語課文翻譯
- 無人機項目融資商業計劃書
- 食品營養學(暨南大學)智慧樹知到答案章節測試2023年
- GA 1810-2022城鎮燃氣系統反恐怖防范要求
- GB/T 2518-2008連續熱鍍鋅鋼板及鋼帶
- 商戶撤場退鋪驗收單
- 部編版小學道德與法治三年級下冊期末質量檢測試卷【含答案】5套
- 斷親協議書范本
- 五年級語文下冊第八單元【教材解讀】課件
- 外科圍手術期患者心理問題原因分析及護理干預
評論
0/150
提交評論