




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山西省太原市山西大學附屬中學高三下學期第六次檢測數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.2.已知傾斜角為的直線與直線垂直,則()A. B. C. D.3.已知向量,夾角為,,,則()A.2 B.4 C. D.4.若直線與曲線相切,則()A.3 B. C.2 D.5.百年雙中的校訓是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產生1到4之間(含1和4)取整數值的隨機數,分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數為一組,表示摸球三次的結果,經隨機模擬產生了以下20組隨機數:141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.6.歷史上有不少數學家都對圓周率作過研究,第一個用科學方法尋求圓周率數值的人是阿基米德,他用圓內接和外切正多邊形的周長確定圓周長的上下界,開創了圓周率計算的幾何方法,而中國數學家劉徽只用圓內接正多邊形就求得的近似值,他的方法被后人稱為割圓術.近代無窮乘積式、無窮連分數、無窮級數等各種值的表達式紛紛出現,使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執行該程序框圖,已知輸出的,若判斷框內填入的條件為,則正整數的最小值是A. B. C. D.7.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.48.己知全集為實數集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)9.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.10.命題“”的否定為()A. B.C. D.11.已知集合,則集合的非空子集個數是()A.2 B.3 C.7 D.812.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.觀察下列式子,,,,……,根據上述規律,第個不等式應該為__________.14.已知a,b均為正數,且,的最小值為________.15.我國古代數學名著《九章算術》對立體幾何有深入的研究,從其中一些數學用語可見,譬如“憋臑”意指四個面都是直角三角形的三棱錐.某“憋臑”的三視圖(圖中網格紙上每個小正方形的邊長為1)如圖所示,已知幾何體高為,則該幾何體外接球的表面積為__________.16.如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.18.(12分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.19.(12分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標原點.(1)證明:點在軸的右側;(2)設線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率20.(12分)已知函數u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數h(x)的單調區間;(2)令f(x)=u(x)﹣v(x),若函數f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數的底數)求x1?x2的最大值.21.(12分)已知函數.(1)若關于的不等式的整數解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數的取值范圍.22.(10分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數的大小,找中間量作比較是一種常見的方法.2、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數基本關系式,考查計算能力,屬于基礎題.3、A【解析】
根據模長計算公式和數量積運算,即可容易求得結果.【詳解】由于,故選:A.【點睛】本題考查向量的數量積運算,模長的求解,屬綜合基礎題.4、A【解析】
設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.5、A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數比20即可得解.【詳解】由題意可知當1,2同時出現時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數的應用和古典概型概率的計算,屬于基礎題.6、B【解析】
初始:,,第一次循環:,,繼續循環;第二次循環:,,此時,滿足條件,結束循環,所以判斷框內填入的條件可以是,所以正整數的最小值是3,故選B.7、B【解析】
解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關系.8、D【解析】
求解一元二次不等式化簡A,求解對數不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數不等式,二次不等式的求法,是基礎題.9、D【解析】
由題意利用函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.10、C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.11、C【解析】
先確定集合中元素,可得非空子集個數.【詳解】由題意,共3個元素,其子集個數為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數為,非空子集有個.12、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內,如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據題意,依次分析不等式的變化規律,綜合可得答案.【詳解】解:根據題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應用,分析不等式的變化規律.14、【解析】
本題首先可以根據將化簡為,然后根據基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.15、【解析】三視圖還原如下圖:,由于每個面是直角,顯然外接球球心O在AC的中點.所以,,填。【點睛】三視圖還原,當出現三個尖點在一個位置時,我們常用“揪尖法”。外接球球心到各個頂點的距離相等,而直角三角形斜邊上的中點到各頂點的距離相等,所以本題的球心為AC中點。16、32π【解析】
設ED=a,根據勾股定理的逆定理可以通過計算可以證明出CE⊥ED.AM=x,根據三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據球的表面積公式進行求解即可.【詳解】設ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當平面ABD⊥平面BCD時,當四面體C﹣EMN的體積才有可能取得最大值,設AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當且僅當x時取等號.解得a=2.此時三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【點睛】本題考查了基本不等式的應用,考查了球的表面積公式,考查了數學運算能力和空間想象能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據,利用兩角和的余弦得到,利用數形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數形結合的方法,屬于中檔題.18、(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數根.當時,易知當,方程在上有且只有一個實數根.此時方程在上也有一個實數根.滿足條件.綜上,實數的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數求參數范圍,考查學生的運算能力,是一道中檔題.19、(1)證明見解析(2)【解析】
(1)設出直線的方程,與橢圓方程聯立,利用根與系數的關系求出點的橫坐標即可證出;(2)根據線段的垂直平分線求出點的坐標,即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設,,聯立消去,得,顯然,,則點的橫坐標,因為,所以點在軸的右側.(2)由(1)得點的縱坐標.即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因為與的面積相等,所以,解得.所以當與的面積相等時,直線的斜率.【點睛】本題主要考查直線與橢圓的位置關系的應用、根與系數的關系應用,以及三角形的面積的計算,意在考查學生的數學運算能力,屬于中檔題.20、(1)單調遞增區間是(0,e),單調遞減區間是(e,+∞)(2)【解析】
(1)化簡函數h(x),求導,根據導數和函數的單調性的關系即可求出(2)函數f(x)恰有兩個極值點x1,x2,則f′(x)=lnx﹣mx=0有兩個正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數m化簡整理可得ln(x1x2)=ln?,設t,構造函數g(t)=()lnt,利用導數判斷函數的單調性,求出函數的最大值即可求出x1?x2的最大值.【詳解】(1)令m=2,函數h(x),∴h′(x),令h′(x)=0,解得x=e,∴當x∈(0,e)時,h′(x)>0,當x∈(e,+∞)時,h′(x)<0,∴函數h(x)單調遞增區間是(0,e),單調遞減區間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數f(x)恰有兩個極值點x1,x2,∴f′(x)=lnx﹣mx=0有兩個不等正根,∴lnx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴ln(x1x2)=ln?,設t,∵1e,∴1<t≤e,設g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調遞增,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小區盜竊防范方案(3篇)
- 醫療耗材購置管理制度
- 化學物品卸貨管理制度
- 消防泳池改造方案(3篇)
- 夜間火災處置方案(3篇)
- 寺廟招標重建方案(3篇)
- 小型工廠管理方案(3篇)
- 定制銷售體系方案(3篇)
- 安裝路燈預算方案(3篇)
- 保安車輛配備方案(3篇)
- 商務溝通與談判 課件
- 鐵塔智能設備接入指導
- DB44-T 2179-2019枇杷育苗技術規程-(高清現行)
- “三重一大”三張表格
- 巡線無人機技術規格書2019320
- 導截流驗收報告匯編
- 旅游經濟運行與調控課件
- 高考語文文言文閱讀常考古代實詞總結
- 核電廠放射性液態流出物排放的主要技術要求
- NBT10364-2019 綜合機械化放頂煤工作面瓦斯涌出量預測方法_(高清最新)
- (完整word版)重慶市建設工程竣工驗收報告、竣工驗收意見書
評論
0/150
提交評論