2025屆四川省成都市雙流區雙流棠湖中學高三一診考試數學試卷含解析_第1頁
2025屆四川省成都市雙流區雙流棠湖中學高三一診考試數學試卷含解析_第2頁
2025屆四川省成都市雙流區雙流棠湖中學高三一診考試數學試卷含解析_第3頁
2025屆四川省成都市雙流區雙流棠湖中學高三一診考試數學試卷含解析_第4頁
2025屆四川省成都市雙流區雙流棠湖中學高三一診考試數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆四川省成都市雙流區雙流棠湖中學高三一診考試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數是()A.160 B.240 C.280 D.3202.已知集合則()A. B. C. D.3.若各項均為正數的等比數列滿足,則公比()A.1 B.2 C.3 D.44.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則5.若,則“”是“的展開式中項的系數為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件6.元代數學家朱世杰的數學名著《算術啟蒙》是中國古代代數學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.67.2019年10月17日是我國第6個“扶貧日”,某醫院開展扶貧日“送醫下鄉”醫療義診活動,現有五名醫生被分配到四所不同的鄉鎮醫院中,醫生甲被指定分配到醫院,醫生乙只能分配到醫院或醫院,醫生丙不能分配到醫生甲、乙所在的醫院,其他兩名醫生分配到哪所醫院都可以,若每所醫院至少分配一名醫生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種8.雙曲線的漸近線方程為()A. B.C. D.9.已知半徑為2的球內有一個內接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.10.由曲線圍成的封閉圖形的面積為()A. B. C. D.11.某個小區住戶共200戶,為調查小區居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區內用水量超過15m3的住戶的戶數為()A.10 B.50 C.60 D.14012.設,滿足約束條件,若的最大值為,則的展開式中項的系數為()A.60 B.80 C.90 D.120二、填空題:本題共4小題,每小題5分,共20分。13.西周初數學家商高在公元前1000年發現勾股定理的一個特例:勾三,股四,弦五.此發現早于畢達哥拉斯定理五百到六百年.我們把可以構成一個直角三角形三邊的一組正整數稱為勾股數.現從3,4,5,6,7,8,9,10,11,12,13這11個數中隨機抽取3個數,則這3個數能構成勾股數的概率為__________.14.數學家狄里克雷對數論,數學分析和數學物理有突出貢獻,是解析數論的創始人之一.函數,稱為狄里克雷函數.則關于有以下結論:①的值域為;②;③;④其中正確的結論是_______(寫出所有正確的結論的序號)15.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.16.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知:,:,:.(1)求與的極坐標方程(2)若與交于點A,與交于點B,,求的最大值.18.(12分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.19.(12分)設函數,,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數在區間上的取值范圍.20.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.21.(12分)已知數列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.22.(10分)如圖,正方形是某城市的一個區域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;(3)請你根據每條可能的路線中等紅綠燈的次數的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數,再求的展開式中的系數,二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數是.故選:C【點睛】本題考查二項展開式指定項的系數,掌握二項展開式的通項是解題的關鍵,屬于基礎題.2、B【解析】

解對數不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數不等式解法,屬于基礎題.3、C【解析】

由正項等比數列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數列基本量的求法,屬基礎題.4、D【解析】

利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.5、B【解析】

求得的二項展開式的通項為,令時,可得項的系數為90,即,求得,即可得出結果.【詳解】若則二項展開式的通項為,令,即,則項的系數為,充分性成立;當的展開式中項的系數為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.6、B【解析】分析:根據流程圖中的可知,每次循環的值應是一個等比數列,公比為;根據流程圖中的可知,每次循環的值應是一個等比數列,公比為,根據每次循環得到的的值的大小決定循環的次數即可.詳解:記執行第次循環時,的值記為有,則有;記執行第次循環時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環結構和數列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數列關系(比如相鄰項滿足等比數列、等差數列的定義,是否是求數列的前和、前項積等).7、B【解析】

分兩類:一類是醫院A只分配1人,另一類是醫院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫院A的情況分兩類:第一類:若醫院A只分配1人,則乙必在醫院B,當醫院B只有1人,則共有種不同分配方案,當醫院B有2人,則共有種不同分配方案,所以當醫院A只分配1人時,共有種不同分配方案;第二類:若醫院A分配2人,當乙在醫院A時,共有種不同分配方案,當乙不在A醫院,在B醫院時,共有種不同分配方案,所以當醫院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.8、A【解析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.9、D【解析】

分別求出球和圓柱的體積,然后可得比值.【詳解】設圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.【點睛】本題主要考查幾何體的體積求解,側重考查數學運算的核心素養.10、A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應用,屬于基礎題.解題時注意積分區間和被積函數的選取.11、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區內用水量超過15立方米的住戶戶數為,故選C12、B【解析】

畫出可行域和目標函數,根據平移得到,再利用二項式定理計算得到答案.【詳解】如圖所示:畫出可行域和目標函數,,即,故表示直線與截距的倍,根據圖像知:當時,的最大值為,故.展開式的通項為:,取得到項的系數為:.故選:.【點睛】本題考查了線性規劃求最值,二項式定理,意在考查學生的計算能力和綜合應用能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由組合數結合古典概型求解即可【詳解】從11個數中隨機抽取3個數有種不同的方法,其中能構成勾股數的有共三種,所以,所求概率為.故答案為【點睛】本題考查古典概型與數學文化,考查組合問題,數據處理能力和應用意識.14、②【解析】

根據新定義,結合實數的性質即可判斷①②③,由定義求得比小的有理數個數,即可確定④.【詳解】對于①,由定義可知,當為有理數時;當為無理數時,則值域為,所以①錯誤;對于②,因為有理數的相反數還是有理數,無理數的相反數還是無理數,所以滿足,所以②正確;對于③,因為,當為無理數時,可以是有理數,也可以是無理數,所以③錯誤;對于④,由定義可知,所以④錯誤;綜上可知,正確的為②.故答案為:②.【點睛】本題考查了新定義函數的綜合應用,正確理解題意是解決此類問題的關鍵,屬于中檔題.15、【解析】

畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意16、2【解析】

聯立直線與拋物線的方程,根據一元二次方程的根與系數的關系以及面積關系求解即可.【詳解】如圖,設,由,則,由可得,由,則,所以,得.故答案為:2【點睛】此題考查了拋物線的性質,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的極坐標方程為;的極坐標方程為:(2)【解析】

(1)根據,代入即可轉化.(2)由:,可得,代入與的極坐標方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數的性質即可求解.【詳解】(1):,,的極坐標方程為:,,的極坐標方程為:,(2):,則(為銳角),,,,當時取等號.【點睛】本題考查了極坐標與直角坐標的互化、二倍角公式、輔助角公式以及三角函數的性質,屬于基礎題.18、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)取中點,連結、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.【詳解】證明:(Ⅰ)取中點,連結、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,設,則,,,,∴,,,設面的法向量,則,取,得,同理,得平面的法向量,設二面角的平面角為,則,∴二面角的余弦值為.【點睛】本題考查面面垂直及線面垂直性質定理、線面垂直判定與性質定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.19、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結果,注意復合函數求導法則,接著應用點斜式寫出直線的方程;(2)先將函數解析式求出,之后借助于導數研究函數的單調性,從而求得函數在相應區間上的最值.詳解:(Ⅰ)當,.,當,,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調遞減,因為,所以在上增,在單調遞增.,,因為,所以在區間上的值域為.點睛:該題考查的是有關應用導數研究函數的問題,涉及到的知識點有導數的幾何意義,曲線在某個點處的切線方程的求法,復合函數求導,函數在給定區間上的最值等,在解題的過程中,需要對公式的正確使用.20、(1)見解析(2)【解析】

(1)根據中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標系,找到點的坐標代入公式即可計算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點,∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補,,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點,,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標系,則,,,,.設平面的法向量為,∴,即.令,則,,可得平面的一個法向量為.又平面的一個法向量為,∴,∴二面角的余弦值為.【點睛】此題考查線面平行,建系通過坐標求二面角等知識點,屬于一般性題目.21、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應用題中所給的條件,有效利用,再者就是注意應用反證法證題的步驟;(2)將式子進行相應的代換,結合不等式的性質證得結果;(3)結合題中的條件,應用反證法求得結果.詳解:證明:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論