新高考數學二輪復習專題3-1三角函數圖像與性質(解析版)_第1頁
新高考數學二輪復習專題3-1三角函數圖像與性質(解析版)_第2頁
新高考數學二輪復習專題3-1三角函數圖像與性質(解析版)_第3頁
新高考數學二輪復習專題3-1三角函數圖像與性質(解析版)_第4頁
新高考數學二輪復習專題3-1三角函數圖像與性質(解析版)_第5頁
已閱讀5頁,還剩33頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題3-1三角函數圖像與性質目錄TOC\o"1-1"\h\u題型01三角函數單調性 1題型02求周期 3題型03非同名函數平移 6題型04對稱軸最值應用 8題型05對稱中心最值應用 11題型06輔助角最值 14題型07正余弦換元型最值 17題型08一元二次型換元最值 20題型09分式型最值 21題型10最值型綜合 23題型11恒等變形:求角 25題型12恒等變形:拆角求值(分式型) 27題型13恒等變形:拆角求值(復合型) 29題型14恒等變形:拆角求值(正切型對偶) 31高考練場 33題型01三角函數單調性【解題攻略】A,ω,φ對函數y=Asin(ωx+φ)圖象的影響(1)函數y=Asin(ωx+φ)(A>0,ω>0)中參數A.φ、ω的作用參數作用AA決定了函數的值域以及函數的最大值和最小值,通常稱A為振幅.φφ決定了x=0時的函數值,通常稱φ為初相,ωx+φ為相位.ωω決定了函數的周期T=SKIPIF1<0.(2)圖象的變換(1)振幅變換要得到函數y=Asinx(A>0,A≠1)的圖象,只要將函數y=sinx的圖象上所有點的縱坐標伸長(當A>1時)或縮短(當0<A<1時)到原來的A倍(橫坐標不變)即可得到.(2)平移變換要得到函數y=sin(x+φ)的圖象,只要將函數y=sinx的圖象上所有點向左(當φ>0時)或向右(當φ<0時)平行移動|φ|個單位長度即可得到.(3)周期變換要得到函數y=sinωx(x∈R)(其中ω>0且ω≠1)的圖象,可以把函數y=sinx上所有點的橫坐標縮短(當ω>1時)或伸長(當0<ω<1時)到原來的SKIPIF1<0_倍(縱坐標不變)即可得到.【典例1-1】(2023·全國·模擬預測)已知函數SKIPIF1<0,則使得SKIPIF1<0和SKIPIF1<0都單調遞增的一個區間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用復合函數的單調性,判斷各選項是否正確.【詳解】當SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時,SKIPIF1<0從0遞減到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞增到1,所以SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,A錯誤;當SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,SKIPIF1<0從1遞減到SKIPIF1<0,所以SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,B錯誤;當SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,所以SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到SKIPIF1<0,C錯誤;當SKIPIF1<0從SKIPIF1<0增加到SKIPIF1<0時,SKIPIF1<0從-1遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞減到0,所以SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,SKIPIF1<0從SKIPIF1<0遞增到SKIPIF1<0,D正確;故選:D【典例1-2】已知函數SKIPIF1<0,則f(x)(

)A.在(0,SKIPIF1<0)單調遞減 B.在(0,π)單調遞增C.在(—SKIPIF1<0,0)單調遞減 D.在(—SKIPIF1<0,0)單調遞增【答案】D【分析】先用誘導公式化簡得到SKIPIF1<0,再將選項代入檢驗,求出正確答案.【詳解】SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0不單調,AB錯誤;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調遞增,故D正確故選:D【變式1-1】(2022上·福建莆田·高三??迹┖瘮礢KIPIF1<0的單調遞增區間為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】先換元,求定義域再結合復合函數的單調性,最后根據正弦函數的單調性求解即可.【詳解】設SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調遞增,取SKIPIF1<0單調增的部分,所以可得:SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0答案:A.【變式1-2】(2023·全國·模擬預測)函數SKIPIF1<0在下列某個區間上單調遞增,這個區間是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由二倍角公式結合輔助角公式化簡可得SKIPIF1<0的表達式,求出其單調增區間,結合選項,即可判斷出答案.【詳解】∵SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0的單調遞增區間為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,∴函數SKIPIF1<0在區間SKIPIF1<0上單調遞增.故選:A【變式1-3】(2023·黑龍江齊齊哈爾·統考二模)“SKIPIF1<0”是“函數SKIPIF1<0在區間SKIPIF1<0上單調遞增”的(

)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】A【分析】根據正弦函數的單調性和參數范圍即可求解.【詳解】若函數SKIPIF1<0區間SKIPIF1<0上單調遞增,則令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,結合SKIPIF1<0是區間,所以SKIPIF1<0,解得SKIPIF1<0.“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件,故選:A..題型02求周期【解題攻略】求周期方法直接法:形如y=Asin(ωx+φ)或者y=Acos(ωx+φ)函數的周期T=SKIPIF1<0.y=Atan(ωx+φ)的周期是T=SKIPIF1<0觀察法:形如

SKIPIF1<0

SKIPIF1<0

SKIPIF1<0等等諸如此類的帶絕對值型,可以通過簡圖判定是否有周期,以及最小正周期的值3.恒等變形轉化法。4.定義證明法【典例1-1】(2023下·湖南長沙·高三長沙一中??茧A段練習)設函數SKIPIF1<0,則SKIPIF1<0的最小正周期(

)A.與SKIPIF1<0有關,且與SKIPIF1<0有關 B.與SKIPIF1<0有關,但與SKIPIF1<0無關C.與SKIPIF1<0無關,且與SKIPIF1<0無關 D.與SKIPIF1<0無關,但與SKIPIF1<0有關【答案】D【分析】根據三角函數的周期性,結合周期成倍數關系的兩個函數之和,其周期為這兩個函數的周期的最小公倍數這一結論,解答即可.【詳解】SKIPIF1<0,對于SKIPIF1<0,其最小正周期為SKIPIF1<0,對于SKIPIF1<0,其最小正周期為SKIPIF1<0,所以對于任意SKIPIF1<0,SKIPIF1<0的最小正周期都為SKIPIF1<0,對于SKIPIF1<0,其最小正周期為SKIPIF1<0,故當SKIPIF1<0時,SKIPIF1<0,其最小正周期為SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0,其最小正周期為SKIPIF1<0,所以SKIPIF1<0的最小正周期與SKIPIF1<0無關,但與SKIPIF1<0有關.故選:D.【典例1-2】(2023上·福建廈門·高三福建省廈門第二中學??茧A段練習)以下函數中最小正周期為SKIPIF1<0的個數是(

)SKIPIF1<0

SKIPIF1<0

SKIPIF1<0

SKIPIF1<0A.1 B.2 C.3 D.4【答案】A【分析】對于A,直接畫出函數圖象驗證即可;對于BCD,舉出反例推翻即可.【詳解】畫出函數SKIPIF1<0的圖象如圖所示:

由圖可知函數SKIPIF1<0的最小正周期為SKIPIF1<0,滿足題意;對于SKIPIF1<0而言,SKIPIF1<0,即函數SKIPIF1<0的最小正周期不是SKIPIF1<0,不滿足題意;對于SKIPIF1<0而言,SKIPIF1<0,即函數SKIPIF1<0的最小正周期不是SKIPIF1<0,不滿足題意;對于SKIPIF1<0而言,SKIPIF1<0,即函數SKIPIF1<0的最小正周期不是SKIPIF1<0,不滿足題意;綜上所述,滿足題意的函數的個數有1個.故選:A.【變式1-1】(2023·全國·高三專題練習)下列函數中是奇函數,且最小正周期是SKIPIF1<0的函數是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】確定SKIPIF1<0和SKIPIF1<0,SKIPIF1<0為偶函數,排除,驗證D選項滿足條件,得到答案.【詳解】對選項A:SKIPIF1<0,函數定義域為SKIPIF1<0,SKIPIF1<0,函數為偶函數,排除;對選項B:SKIPIF1<0,函數定義域為SKIPIF1<0,SKIPIF1<0,函數為偶函數,排除;對選項C:SKIPIF1<0,函數定義域為SKIPIF1<0,SKIPIF1<0,函數為偶函數,排除;對選項D:SKIPIF1<0,函數定義域為SKIPIF1<0,SKIPIF1<0,函數為奇函數,SKIPIF1<0,滿足條件;故選:D.【變式1-2】(2023·廣東·統考二模)已知函數SKIPIF1<0,SKIPIF1<0的定義域為R,則“SKIPIF1<0,SKIPIF1<0為周期函數”是“SKIPIF1<0為周期函數”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】D【分析】根據通過反例和周期的性質判斷即可.【詳解】兩個周期函數之和是否為周期函數,取決于兩個函數的周期的比是否為有理數,若為有理數,則有周期,若不為有理數,則無周期.SKIPIF1<0的周期為SKIPIF1<0,SKIPIF1<0的周期為SKIPIF1<0,則當SKIPIF1<0時,只有周期的整數倍才是函數的周期,則不是充分條件;若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為周期函數,但SKIPIF1<0,SKIPIF1<0為周期函數不正確,故不是必要條件;因此為不充分不必要條件.故選:D【變式1-3】(2023上·江蘇·高三專題練習)在函數①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0中,最小正周期為π的函數有()A.①③ B.①④C.③④ D.②③【答案】D【分析】根據函數圖象的翻折變換和周期公式可得.【詳解】①由余弦函數的奇偶性可知,SKIPIF1<0,最小值周期為SKIPIF1<0;②由翻折變換可知,函數SKIPIF1<0的圖象如圖:由圖知SKIPIF1<0的最小值周期為SKIPIF1<0;③由周期公式得SKIPIF1<0,所以SKIPIF1<0的最小值周期為SKIPIF1<0;④SKIPIF1<0的最小值周期為SKIPIF1<0.故選:D題型03非同名函數平移【解題攻略】平移變換:1.基本法:提系數(就是直接換x,其余的都不動);2.正到余,余到正:方法一:誘導公式化為同名(盡量化正為余,因為余弦是偶函數,可以解決系數是負的);方法二:直接第極大值法(通過快速畫圖,正弦對應第一極大值軸處。余弦即五點第一點處,本方法是重點)【典例1-1】(2023秋·山東·高三山東省實驗中學校考期末)要得到函數SKIPIF1<0的圖象,只需將函數SKIPIF1<0的圖象(

)A.先向右平移SKIPIF1<0個單位長度,再向下平移1個單位長度B.先向左平移SKIPIF1<0個單位長度,再向上平移1個單位長度C.先向右平移SKIPIF1<0個單位長度,再向下平移1個單位長度D.先向左平移SKIPIF1<0個單位長度,再向上平移1個單位長度【答案】B【解析】根據SKIPIF1<0,SKIPIF1<0可判斷.【詳解】SKIPIF1<0,所以SKIPIF1<0先向左平移SKIPIF1<0個單位長度,再向上平移1個單位長度可得到SKIPIF1<0的圖象.故選:B.【典例1-2】(2021春·河南許昌·高三許昌實驗中學??迹┮玫胶瘮礢KIPIF1<0的圖象,只需將函數SKIPIF1<0的圖象(

)A.向左平移SKIPIF1<0個單位長度 B.向右平移SKIPIF1<0個單位長度C.向左平移1個單位長度 D.向右平移1個單位長度【答案】C【分析】把SKIPIF1<0化成SKIPIF1<0可得平移的發現及其長度.【詳解】因為SKIPIF1<0,所以要得到函數SKIPIF1<0的圖象,只需把函數SKIPIF1<0的圖象上所有的點向左平移1個單位長度.故選:C.【變式1-1】(2020春·全國·高三校聯考階段練習)要得到函數SKIPIF1<0的圖象,只需將函數SKIPIF1<0的圖象(

)A.向左平移SKIPIF1<0個單位 B.向右平移SKIPIF1<0個單位C.向左平移SKIPIF1<0個單位 D.向右平栘SKIPIF1<0個單位【答案】C【解析】由題意利用函數SKIPIF1<0的圖象變換規律,得出結論.【詳解】解:要得到函數SKIPIF1<0的圖象,只需將函數SKIPIF1<0的圖象向左平移SKIPIF1<0個單位即可,故選:C.【變式1-2】(2022·全國·高三專題練習)為得到函數SKIPIF1<0的圖象,只需將函數SKIPIF1<0圖象上所有的點(

)A.向左平移SKIPIF1<0個單位長度 B.向右平移SKIPIF1<0個單位長度C.向左平移SKIPIF1<0個單位長度 D.向右平移SKIPIF1<0個單位長度【答案】D【分析】先得到SKIPIF1<0,再利用平移變換求解.【詳解】解:因為SKIPIF1<0,將其圖象上所有的點向右平移SKIPIF1<0個單位長度,得到函數SKIPIF1<0的圖象.A,B,C都不滿足.故選:D【變式1-3】(2022·河南鶴壁·鶴壁高中??寄M預測)已知函數SKIPIF1<0,為了得到函數SKIPIF1<0的圖象只需將y=f(x)的圖象(

)A.向右平移SKIPIF1<0個單位 B.向右平移SKIPIF1<0個單位C.向左平移SKIPIF1<0個單位 D.向左平移SKIPIF1<0個單位【答案】C【分析】根據誘導公式SKIPIF1<0,SKIPIF1<0即可得到平移方法.【詳解】函數SKIPIF1<0,SKIPIF1<0,所以為了得到函數SKIPIF1<0的圖象只需將y=f(x)的圖象向左平移SKIPIF1<0個單位.故選:C題型04對稱軸最值應用【解題攻略】正余弦對稱軸:最值處,令sin(ωx+φ)=1,則ωx+φ=kπ+eq\f(π,2)(k∈Z),可求得對稱軸方程;對稱軸代入,三角函數部分必為正負1,還可以理解為輔助角那個整體取得最大值或者最小值SKIPIF1<0【典例1-1】已知函數SKIPIF1<0的最大值為SKIPIF1<0,若存在實數SKIPIF1<0,使得對任意實數SKIPIF1<0,總有SKIPIF1<0成立,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0湖北省荊州市沙市中學2021-2022學年高三上學期數學試題【答案】B【分析】結合三角恒等變換求得SKIPIF1<0的最大值和最小值,并求得SKIPIF1<0的最小值.【詳解】SKIPIF1<0SKIPIF1<0,當SKIPIF1<0時SKIPIF1<0取得最大值為SKIPIF1<0.當SKIPIF1<0時SKIPIF1<0取得最小值為SKIPIF1<0.依題意,存在實數SKIPIF1<0,使得對任意實數SKIPIF1<0,總有SKIPIF1<0成立,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0是整數,SKIPIF1<0為奇數,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B【典例1-2】(2022屆湘贛十四校高三聯考第二次考試理數試題=)已知函數SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度得到SKIPIF1<0的圖象,若SKIPIF1<0為SKIPIF1<0的一條對稱軸,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】直接利用三角函數關系式的恒等變換和平移變換得SKIPIF1<0,SKIPIF1<0,再利用三角函數對稱性列方程求解即可.【詳解】設SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0是SKIPIF1<0的一條對稱軸,∴SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.故答案為SKIPIF1<0【變式1-1】已知把函數SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度,再把橫坐標縮小到原來一半,縱坐標不變,得到函數SKIPIF1<0的圖象,若SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先化簡函數SKIPIF1<0,然后根據圖像的變換得函數SKIPIF1<0的解析式,通過判斷得SKIPIF1<0,SKIPIF1<0同時令SKIPIF1<0取得最大值或最小值時,SKIPIF1<0,再結合函數SKIPIF1<0的圖像,即可求得SKIPIF1<0的最大值.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.將圖象向右平移至SKIPIF1<0個單位長度,再把橫坐標縮小到原來一半,縱坐標不變,得到函數SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0同時令SKIPIF1<0取得最大值或最小值時,SKIPIF1<0.當SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0SKIPIF1<0,根據函數的圖象可知SKIPIF1<0的最大值為SKIPIF1<0個周期的長度,即SKIPIF1<0故選:C.【變式1-2】(河南省三門峽市2021-2022學年高三上學期階段性檢測理科數學試題).將函數SKIPIF1<0的圖象上的所有點的橫坐標縮短為原來的SKIPIF1<0,縱坐標不變,再把所得的圖象向左平移SKIPIF1<0個單位長度,然后再把所得的圖象向下平移1個單位長度,得到函數SKIPIF1<0的圖象,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據三角函數平移變換,先求得SKIPIF1<0的解析式.根據SKIPIF1<0,可知SKIPIF1<0,即SKIPIF1<0.根據SKIPIF1<0可分別求得SKIPIF1<0的最大值和SKIPIF1<0的最小值,即可求得SKIPIF1<0的最大值.【詳解】根據平移變換將函數SKIPIF1<0的圖象上的所有點的橫坐標縮短為原來的SKIPIF1<0,縱坐標不變,再把所得的圖象向左平移SKIPIF1<0個單位長度,然后再把所得的圖象向下平移1個單位長度,可得SKIPIF1<0由SKIPIF1<0,可知SKIPIF1<0即SKIPIF1<0SKIPIF1<0所以SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0則SKIPIF1<0的最大值為SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0所以SKIPIF1<0的最大值為SKIPIF1<0故選:A【變式1-3】(2021屆安徽省馬鞍山二中高三下學期4月高考模擬數學試題)將函數SKIPIF1<0的圖象向左平移SKIPIF1<0(SKIPIF1<0)個單位長度后得到函數SKIPIF1<0的圖象,若使SKIPIF1<0成立的a、b有SKIPIF1<0,則下列直線中可以是函數SKIPIF1<0圖象的對稱軸的是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據三角函數平移關系求出SKIPIF1<0的解析式,結合SKIPIF1<0成立的SKIPIF1<0有SKIPIF1<0,求出SKIPIF1<0的關系,結合最小值建立方程求出SKIPIF1<0的值即可.解:將函數SKIPIF1<0的圖象向左平移SKIPIF1<0(SKIPIF1<0)個單位長度后得到函數SKIPIF1<0的圖象,

即SKIPIF1<0,若SKIPIF1<0成立,即SKIPIF1<0,即SKIPIF1<0,

則SKIPIF1<0與SKIPIF1<0一個取最大值1,一個取最小值?1,不妨設SKIPIF1<0,

則SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,

∵SKIPIF1<0,∴當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,

SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0(舍),

即SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,

當SKIPIF1<0時,對稱軸方程為SKIPIF1<0.故選:D.題型05對稱中心最值應用【解題攻略】正余弦對稱中心:零點處,令sin(ωx+φ)=0,ωx+φ=kπ(k∈Z),可求得對稱中心的橫坐標對稱中心橫坐標代入,三角函數那部分必為0【典例1-1】(2022·全國·高三專題練習)已知函數SKIPIF1<0的兩條相鄰對稱軸之間的距離為SKIPIF1<0,則下列點的坐標為SKIPIF1<0的對稱中心的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據相鄰對稱軸之間距離可得最小正周期為SKIPIF1<0,由此可求得SKIPIF1<0,得到SKIPIF1<0解析式;利用正弦型函數對稱中心的求法可求得對稱中心,對比選項可得結果.【詳解】SKIPIF1<0兩條相鄰對稱軸之間的距離為SKIPIF1<0,SKIPIF1<0最小正周期SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0的對稱中心為SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0的一個對稱中心為SKIPIF1<0.故選:C.【典例1-2】(2022·天津南開·二模)函數SKIPIF1<0SKIPIF1<0,其圖象的一個最低點是SKIPIF1<0,距離SKIPIF1<0點最近的對稱中心為SKIPIF1<0,則(

)A.SKIPIF1<0B.SKIPIF1<0是函數SKIPIF1<0圖象的一條對稱軸C.SKIPIF1<0時,函數SKIPIF1<0單調遞增D.SKIPIF1<0的圖象向右平移SKIPIF1<0個單位后得到SKIPIF1<0的圖象,若SKIPIF1<0是奇函數,則SKIPIF1<0的最小值是SKIPIF1<0【答案】C【分析】由函數的圖像的頂點坐標求出SKIPIF1<0,由周期求出SKIPIF1<0,由最低點求出SKIPIF1<0的值,可得函數的解析式,再利用三角函數的圖像和性質,得出結論.【詳解】解:SKIPIF1<0函數SKIPIF1<0,SKIPIF1<0的圖象的一個最低點是SKIPIF1<0,距離SKIPIF1<0點最近的對稱中心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以函數SKIPIF1<0,故A錯誤;SKIPIF1<0,故函數關于SKIPIF1<0對稱,故B錯誤;當SKIPIF1<0時,SKIPIF1<0,函數SKIPIF1<0單調遞增,故C正確;把SKIPIF1<0的圖象向右平移SKIPIF1<0個單位后得到SKIPIF1<0的圖象,若SKIPIF1<0是奇函數,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0的最小值是SKIPIF1<0,故D錯誤,故選:C【變式1-1】.(2022·四川涼山·三模(理))將函數SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,再將縱坐標伸長為原來的4倍(橫坐標不變)得到函數SKIPIF1<0的圖象,且SKIPIF1<0的圖象上一條對稱軸與一個對稱中心的最小距離為SKIPIF1<0,對于函數SKIPIF1<0有以下幾個結論:(1)SKIPIF1<0;(2)它的圖象關于直線SKIPIF1<0對稱;(3)它的圖象關于點SKIPIF1<0對稱;(4)若SKIPIF1<0,則SKIPIF1<0;則上述結論正確的個數為(

)A.1 B.2 C.3 D.4【答案】C【分析】先根據圖像平移的性質求出SKIPIF1<0的函數解析式,逐項代入分析即可.【詳解】解:由題意得:SKIPIF1<0,向左平移SKIPIF1<0個單位,再將縱坐標伸長為原來的4倍(橫坐標不變)得到函數SKIPIF1<0.對于選項A:由SKIPIF1<0的圖象上一條對稱軸與一個對稱中心的最小距離為SKIPIF1<0,最小正周期SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,所以(1)錯誤;當SKIPIF1<0時,代入SKIPIF1<0可知SKIPIF1<0,故圖像的一條對稱軸是SKIPIF1<0,故(2)正確;當SKIPIF1<0時,代入SKIPIF1<0可知SKIPIF1<0,故圖像的一個對稱點是SKIPIF1<0,故(3)正確;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0因此SKIPIF1<0在SKIPIF1<0上的取值范圍是SKIPIF1<0,故(4)正確;由上可知(2)(3)(4)正確,正確的個數為SKIPIF1<0個.故選:C【變式1-2】(2023·全國·高三專題練習)將函數SKIPIF1<0的圖象分別向左、向右各平移SKIPIF1<0個單位長度后,所得的兩個圖象對稱中心重合,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.2 C.3 D.6【答案】A【分析】根據三角函數的圖象變換求得SKIPIF1<0和SKIPIF1<0,根據函數SKIPIF1<0與SKIPIF1<0的對稱中心重合,得到SKIPIF1<0,即可求解.【詳解】解:將函數SKIPIF1<0的圖象分別向左平移SKIPIF1<0個單位長度后,可得SKIPIF1<0將函數SKIPIF1<0的圖象分別向右各平移SKIPIF1<0個單位長度后,可得SKIPIF1<0,因為函數SKIPIF1<0與SKIPIF1<0的對稱中心重合,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A.【變式1-3】(2021·安徽·六安一中高三階段練習(理))已知SKIPIF1<0的一個對稱中心為SKIPIF1<0,把SKIPIF1<0的圖像向右平移SKIPIF1<0個單位后,可以得到偶函數SKIPIF1<0的圖象,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用輔助角公式將函數化簡,即可求出函數的對稱中心坐標,再根據三角函數的平移變換規則得到SKIPIF1<0的解析式,結合函數的奇偶性,求出SKIPIF1<0的取值,從而計算可得;【詳解】解:因為SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,即函數的對稱中心坐標為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,把SKIPIF1<0的圖像向右平移SKIPIF1<0個單位得到SKIPIF1<0,因為SKIPIF1<0為偶函數,所以SKIPIF1<0,解得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以當SKIPIF1<0時SKIPIF1<0;故選:D題型06輔助角最值【解題攻略】SKIPIF1<0輔助角范圍滿足:SKIPIF1<0【典例1-1】(江西省上饒市(天佑中學、余干中學等)六校2021屆高三下學期第一次聯考數學試題已知函數SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,則實數SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0可得出不等式SKIPIF1<0對任意的SKIPIF1<0恒成立,化簡得出SKIPIF1<0,分SKIPIF1<0、SKIPIF1<0兩種情況討論,結合SKIPIF1<0可求得實數SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0且SKIPIF1<0,由題意可知,對任意的SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0成立;當SKIPIF1<0時,函數SKIPIF1<0在區間SKIPIF1<0上單調遞增,則SKIPIF1<0,此時SKIPIF1<0.綜上所述,實數SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.【典例1-2】已知函數SKIPIF1<0在SKIPIF1<0上的值域為SKIPIF1<0,則SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【分析】化簡得SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再結合三角函數的性質可求解.【詳解】由題意得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0.因為SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,因為SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0.又當SKIPIF1<0時,SKIPIF1<0單調遞減,且SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.【變式1-1】.已知函數SKIPIF1<0,周期SKIPIF1<0,SKIPIF1<0,且在SKIPIF1<0處取得最大值,則使得不等式SKIPIF1<0恒成立的實數SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】先根據三角恒等變換和三角形函數的性質,以及同角的三角函數的關系可得SKIPIF1<0,①,再根據SKIPIF1<0,可得SKIPIF1<0,②,通過①②求出SKIPIF1<0的值,再根據三角函數的性質可得SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0,根據不等式SKIPIF1<0恒成立,則SKIPIF1<0,即可求出答案.【詳解】SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0SKIPIF1<0處取得最大值,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,②,①SKIPIF1<0②得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去),由①得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0在第一象限,SKIPIF1<0取SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0最小,則SKIPIF1<0,即SKIPIF1<0,若不等式SKIPIF1<0恒成立,則SKIPIF1<0,故選:B【變式1-2】(浙江省紹興市諸暨市海亮高級中學2021-2022學年高三上學期12月選考數學試題)已知當SKIPIF1<0時,函數SKIPIF1<0取到最大值,則SKIPIF1<0是()A.奇函數,在SKIPIF1<0時取到最小值; B.偶函數,在SKIPIF1<0時取到最小值;C.奇函數,在SKIPIF1<0時取到最小值; D.偶函數,在SKIPIF1<0時取到最小值;【答案】B【分析】由輔助角公式可得SKIPIF1<0,根據SKIPIF1<0時SKIPIF1<0有最大值可得SKIPIF1<0,求出SKIPIF1<0,再根據奇偶性并計算SKIPIF1<0、SKIPIF1<0可得答案.【詳解】SKIPIF1<0SKIPIF1<0,取SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0有最大值SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0為偶函數,SKIPIF1<0,SKIPIF1<0,故B正確,故選:B.【變式1-3】(江蘇省淮安市淮陰中學2020屆高三下學期5月高考模擬數學試題)若存在正整數m使得關于x的方程SKIPIF1<0在SKIPIF1<0上有兩個不等實根,則正整數n的最小值是______.【答案】4【分析】化簡SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上有兩個不等實根,轉化為SKIPIF1<0在SKIPIF1<0上有兩個不等實根,故SKIPIF1<0,即可得出答案.【詳解】SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,+SKIPIF1<0在SKIPIF1<0上有兩個不等實根,SKIPIF1<0在SKIPIF1<0上有兩個不等實根,則SKIPIF1<0,所以SKIPIF1<0①對任意SKIPIF1<0,SKIPIF1<0,恒成立.由②得SKIPIF1<0,存在SKIPIF1<0,成立,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:4題型07正余弦換元型最值【解題攻略】SKIPIF1<0與SKIPIF1<0在同一函數中一般可設SKIPIF1<0進行換元.換元時注意新元的取值范圍.SKIPIF1<0之間的互化關系1.SKIPIF1<02.SKIPIF1<0【典例1-1】(2021下·上海徐匯·高三南洋中學校考階段練習)已知函數SKIPIF1<0,則SKIPIF1<0的值域為.【答案】SKIPIF1<0【分析】利用換元法,令SKIPIF1<0,進而可得SKIPIF1<0,再利用函數的單調性即可求解.【詳解】由SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又對勾函數SKIPIF1<0的單調遞減區間為SKIPIF1<0,SKIPIF1<0;單調遞增區間為SKIPIF1<0,SKIPIF1<0,結合對勾函數的圖象,如下:所以SKIPIF1<0,所以SKIPIF1<0,所以函數的值域為SKIPIF1<0.故答案為:SKIPIF1<0.【典例1-2】(2022·高三單元測試)函數SKIPIF1<0的值域為.【答案】SKIPIF1<0【分析】利用SKIPIF1<0通過換元將原函數轉化為含未知量SKIPIF1<0的函數SKIPIF1<0,再解出函數SKIPIF1<0的值域即為函數SKIPIF1<0的值域.【詳解】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,即函數SKIPIF1<0的值域為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】已知函數SKIPIF1<0,則SKIPIF1<0的最大值為___________.【答案】SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論