




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省茂名市高州市石鼓中學2024屆高三第一次診斷考試數學試題理試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古建筑借助榫卯將木構件連接起來,構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是A. B. C. D.2.已知函數,若關于的方程恰好有3個不相等的實數根,則實數的取值范圍為()A. B. C. D.3.已知,,則的大小關系為()A. B. C. D.4.已知函數是奇函數,且,若對,恒成立,則的取值范圍是()A. B. C. D.5.已知函數,若時,恒成立,則實數的值為()A. B. C. D.6.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.7.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題8.已知定義在R上的函數(m為實數)為偶函數,記,,則a,b,c的大小關系為()A. B. C. D.9.復數滿足(為虛數單位),則的值是()A. B. C. D.10.復數滿足,則復數在復平面內所對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知向量,,若,則()A. B. C.-8 D.812.已知集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.14.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.15.己知函數,若關于的不等式對任意的恒成立,則實數的取值范圍是______.16.某校共有師生1600人,其中教師有1000人,現用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數的取值范圍.18.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.19.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.20.(12分)已知數列滿足:對任意,都有.(1)若,求的值;(2)若是等比數列,求的通項公式;(3)設,,求證:若成等差數列,則也成等差數列.21.(12分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.22.(10分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。2、D【解析】
討論,,三種情況,求導得到單調區間,畫出函數圖像,根據圖像得到答案.【詳解】當時,,故,函數在上單調遞增,在上單調遞減,且;當時,;當時,,,函數單調遞減;如圖所示畫出函數圖像,則,故.故選:.【點睛】本題考查了利用導數求函數的零點問題,意在考查學生的計算能力和應用能力.3、D【解析】
由指數函數的圖像與性質易得最小,利用作差法,結合對數換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據指數函數的圖像與性質可知,由對數函數的圖像與性質可知,,所以最小;而由對數換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數式與對數式的化簡變形,對數換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.4、A【解析】
先根據函數奇偶性求得,利用導數判斷函數單調性,利用函數單調性求解不等式即可.【詳解】因為函數是奇函數,所以函數是偶函數.,即,又,所以,.函數的定義域為,所以,則函數在上為單調遞增函數.又在上,,所以為偶函數,且在上單調遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數單調性求解不等式,根據方程組法求函數解析式,利用導數判斷函數單調性,屬壓軸題.5、D【解析】
通過分析函數與的圖象,得到兩函數必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數與的圖象,因為時,恒成立,于是兩函數必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數的圖象的綜合應用和函數的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.6、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.7、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.8、B【解析】
根據f(x)為偶函數便可求出m=0,從而f(x)=﹣1,根據此函數的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數的定義,指數函數的單調性,對于偶函數比較函數值大小的方法就是將自變量的值變到區間[0,+∞)上,根據單調性去比較函數值大小.9、C【解析】
直接利用復數的除法的運算法則化簡求解即可.【詳解】由得:本題正確選項:【點睛】本題考查復數的除法的運算法則的應用,考查計算能力.10、B【解析】
設,則,可得,即可得到,進而找到對應的點所在象限.【詳解】設,則,,,所以復數在復平面內所對應的點為,在第二象限.故選:B【點睛】本題考查復數在復平面內對應的點所在象限,考查復數的模,考查運算能力.11、B【解析】
先求出向量,的坐標,然后由可求出參數的值.【詳解】由向量,,則,,又,則,解得.故選:B【點睛】本題考查向量的坐標運算和模長的運算,屬于基礎題.12、C【解析】
解不等式得出集合A,根據交集的定義寫出A∩B.【詳解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故選C.【點睛】本題考查了解不等式與交集的運算問題,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.14、2【解析】
由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.15、【解析】
首先判斷出函數為定義在上的奇函數,且在定義域上單調遞增,由此不等式對任意的恒成立,可轉化為在上恒成立,進而建立不等式組,解出即可得到答案.【詳解】解:函數的定義域為,且,函數為奇函數,當時,函數,顯然此時函數為增函數,函數為定義在上的增函數,不等式即為,在上恒成立,,解得.故答案為.【點睛】本題考查函數單調性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規題目.16、1【解析】
直接根據分層抽樣的比例關系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學生的人數為6001.故答案為:1.【點睛】本題考查了分層抽樣的計算,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數的取值范圍是【點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數絕對值三角不等式的應用問題,屬于常規題型.18、(1)的值為或.(2)【解析】
(1)分類討論,當時,線段與拋物線沒有公共點,設點在拋物線準線上的射影為,當三點共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當時,線段與拋物線有公共點,利用兩點間的距離公式即可求解.(2)由題意可得軸且設,則,代入拋物線方程求出,再利用三角形的面積公式即可求解.【詳解】由題,,若線段與拋物線沒有公共點,即時,設點在拋物線準線上的射影為,則三點共線時,的最小值為,此時若線段與拋物線有公共點,即時,則三點共線時,的最小值為:,此時綜上,實數的值為或.因為,所以軸且設,則,代入拋物線的方程解得于是,所以【點睛】本題考查了拋物線的焦半徑公式、直線與拋物線的位置關系中的面積問題,屬于中檔題.19、(1);(2).【解析】
(1)根據焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數量積公式并化簡,由換元法令,代入可得,再令及,結合函數單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內單調遞增,所以,即所以【點睛】本題考查了橢圓的標準方程求法,直線與橢圓的位置關系綜合應用,由韋達定理研究參數間的關系,平面向量的線性運算與數量積運算,弦長公式的應用及換元法在求取值范圍問題中的綜合應用,計算量大,屬于難題.20、(1)3;(2);(3)見解析.【解析】
(1)依據下標的關系,有,,兩式相加,即可求出;(2)依據等比數列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數列的定義,即可證出。【詳解】(1)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數列,設公差為,,,,,由等差數列的定義知,也成等差數列。【點睛】本題主要考查等差、等比數列的定義以及賦值法的應用,意在考查學生的邏輯推理,數學建模,綜合運用數列知識的能力。21、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當的斜率為時和斜率不為時的情況列出相應式子,即可得出直線與圓相切;由知,的面積為【詳解】解:由題意,橢圓的焦點在軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當的斜率為時,,,于是,到的距離為,直線與圓相切.當的斜率不為時,設的方程為,與聯立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為,直線與圓相切.綜上,直線與圓相切.由知,的面積為,上式中,當且僅當等號成立,所以面積的最小值為1.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預制菜在2025年餐飲業環保政策下的機遇與挑戰報告
- 保險承保題目及答案
- 安全職稱考試題庫及答案
- 康復醫療器械市場創新產品應用前景預測:2025年需求分析報告
- 安全生產禁令試題及答案
- 培訓課件有沒有版權
- 2025年成人教育終身學習平臺運營效率與市場占有率研究報告
- 個人養老金制度2025年對能源行業投資的影響與機遇分析報告
- 智慧交通系統2025年交通流量預測技術應用與智能交通設施報告001
- 胖東來管理培訓課件
- 《民用無人駕駛航空器系統分類及分級》考試題庫(含答案)
- 國際化競爭格局下的動漫游戲行業發展策略
- GB/T 44087-2024北斗三號區域短報文通信用戶終端技術要求與測試方法
- GB/T 43868-2024電化學儲能電站啟動驗收規程
- 中醫藥健康管理服務流程
- 資本論在中國智慧樹知到期末考試答案2024年
- 國家職業技術技能標準 6-16-02-06 油氣水井測試工 人社廳發202226號
- 繼電保護配置及整定計算
- 初高中物理銜接課件
- 血管導管相關血流感染預防與控制
- 第四次教育革命:人工智能如何改變教育
評論
0/150
提交評論