湖南省麓山國際實驗學校2024年中考數學考前最后一卷含解析_第1頁
湖南省麓山國際實驗學校2024年中考數學考前最后一卷含解析_第2頁
湖南省麓山國際實驗學校2024年中考數學考前最后一卷含解析_第3頁
湖南省麓山國際實驗學校2024年中考數學考前最后一卷含解析_第4頁
湖南省麓山國際實驗學校2024年中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省麓山國際實驗學校2024年中考數學考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.2.已知拋物線y=x2+bx+c的對稱軸為x=2,若關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內有兩個相等的實數根,則c的取值范圍是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=43.如圖,一圓弧過方格的格點A、B、C,在方格中建立平面直角坐標系,使點A的坐標為(﹣3,2),則該圓弧所在圓心坐標是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)4.對于點A(x1,y1),B(x2,y2),定義一種運算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點C,D,E,F,滿足,則C,D,E,F四點【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數圖象上D.是同一個正方形的四個頂點5.下列天氣預報中的圖標,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6.小手蓋住的點的坐標可能為()A. B. C. D.7.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.28.如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°9.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數的圖象與AB邊交于點D,與BC邊交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數y=kx圖象上,則k的值是()A. B. C. D.10.下列幾何體中,主視圖和俯視圖都為矩形的是(

)A. B. C. D.11.在0,-2,5,,-0.3中,負數的個數是().A.1 B.2 C.3 D.412.的負倒數是()A. B.- C.3 D.﹣3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x3=y14.尺規作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據是_____.15.如圖,已知長方體的三條棱AB、BC、BD分別為4,5,2,螞蟻從A點出發沿長方體的表面爬行到M的最短路程的平方是_____.16.函數y=中,自變量x的取值范圍是17.如圖,線段AB的長為4,C為AB上一個動點,分別以AC、BC為斜邊在AB的同側作兩個等腰直角三角形ACD和BCE,連結DE,則DE長的最小值是_____.18.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側面展開圖的面積為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發現;當兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下如圖(1)∠DAB=90°,求證:a2+b2=c2證明:連接DB,過點D作DF⊥BC交BC的延長線于點F,則DF=b-aS四邊形ADCB=S四邊形ADCB=∴化簡得:a2+b2=c2請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c220.(6分)旋轉變換是解決數學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,①求∠DAF的度數;②求證:△ADE≌△ADF;(2)如圖2,當α=90°時,猜想BD、DE、CE的數量關系,并說明理由;(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為.21.(6分)某市出租車計費方法如圖所示,x(km)表示行駛里程,y(元)表示車費,請根據圖象回答下列問題:出租車的起步價是多少元?當x>3時,求y關于x的函數關系式;若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.22.(8分)如圖,將矩形ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.(1)求證:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的長.23.(8分)已知:如圖,點A,F,C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.24.(10分)閱讀材料:小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(其中均為整數),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結論,找一組正整數,填空:+=(+)2;(3)若,且均為正整數,求的值.25.(10分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,過B點的切線交OP于點C.求證:∠CBP=∠ADB.若OA=2,AB=1,求線段BP的長.26.(12分)已知:如圖,四邊形ABCD的對角線AC和BD相交于點E,AD=DC,DC2=DE?DB,求證:(1)△BCE∽△ADE;(2)AB?BC=BD?BE.27.(12分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

根據菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.2、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數根,當△=0時,即c=4,此時x=2,滿足題意.當△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數與一元二次方程的關系.理解二次函數與一元二次方程之間的關系是解題的關鍵.3、C【解析】如圖:分別作AC與AB的垂直平分線,相交于點O,則點O即是該圓弧所在圓的圓心.∵點A的坐標為(﹣3,2),∴點O的坐標為(﹣2,﹣1).故選C.4、A。【解析】∵對于點A(x1,y1),B(x2,y2),,∴如果設C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又∵,∴。∴。令,則C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直線上,∴互不重合的四點C,D,E,F在同一條直線上。故選A。5、A【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不合題意;D、不是軸對稱圖形,不是中心對稱圖形,不合題意.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.6、B【解析】

根據題意,小手蓋住的點在第四象限,結合第四象限點的坐標特點,分析選項可得答案.【詳解】根據圖示,小手蓋住的點在第四象限,第四象限的點坐標特點是:橫正縱負;分析選項可得只有B符合.故選:B.【點睛】此題考查點的坐標,解題的關鍵是記住各象限內點的坐標的符號,進而對號入座,四個象限的符號特點分別是:第一象限(+,+);第二象限(?,+);第三象限(?,?);第四象限(+,?).7、C【解析】

直接利用有理數的除法運算法則計算得出答案.【詳解】解:(-18)÷9=-1.

故選:C.【點睛】此題主要考查了有理數的除法運算,正確掌握運算法則是解題關鍵.8、B【解析】

延長AC交DE于點F,根據所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長AC交DE于點F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內錯角相等,兩直線平行;③同旁內角互補,兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內,垂直于同一直線的兩條直線互相平行.9、B【解析】

根據矩形的性質得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據軸對稱的性質得到BF=B′F,BB′⊥ED求得BB′,設EG=x,根據勾股定理即可得到結論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質,勾股定理,熟練掌握折疊的性質是解題的關鍵.10、B【解析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.11、B【解析】

根據負數的定義判斷即可【詳解】解:根據負數的定義可知,這一組數中,負數有兩個,即-2和-0.1.故選B.12、D【解析】

根據倒數的定義,互為倒數的兩數乘積為1,2×=1.再求出2的相反數即可解答.【詳解】根據倒數的定義得:2×=1.

因此的負倒數是-2.

故選D.【點睛】本題考查了倒數,解題的關鍵是掌握倒數的概念.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、7【解析】

由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點睛】本題考查了分式的化簡求值.14、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解析】

利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據2平行四邊形的性質得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【點睛】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.15、61【解析】分析:要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答,注意此題展開圖后螞蟻的爬行路線有兩種,分別求出,選取最短的路程.詳解:如圖①:AM2=AB2+BM2=16+(5+2)2=65;如圖②:AM2=AC2+CM2=92+4=85;如圖:AM2=52+(4+2)2=61.∴螞蟻從A點出發沿長方體的表面爬行到M的最短路程的平方是:61.故答案為:61.點睛:此題主要考查了平面展開圖,求最短路徑,解決此類題目的關鍵是把長方體的側面展開“化立體為平面”,用勾股定理解決.16、x≥0且x≠1【解析】試題分析:根據分式有意義的條件是分母不為0;分析原函數式可得關系式x-1≠0,解可得答案.試題解析:根據題意可得x-1≠0;解得x≠1;故答案為x≠1.考點:函數自變量的取值范圍;分式有意義的條件.17、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點,分別以AC、BC為斜邊在AB的同側作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點:不等式的性質點評:本題考查不等式的性質,會用勾股定理,完全平方公式,不等關系等知識,它們是解決本題的關鍵18、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析.【解析】

首先連結BD,過點B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.【詳解】證明:連結BD,過點B作DE邊上的高BF,則BF=b-a,∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【點睛】此題考查了勾股定理的證明,用兩種方法表示出五邊形ACBED的面積是解本題的關鍵.20、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】

(1)①利用旋轉的性質得出∠FAB=∠CAE,再用角的和即可得出結論;②利用SAS判斷出△ADE≌△ADF,即可得出結論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出結論.【詳解】解:(1)①由旋轉得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如圖2,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根據勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如圖3,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,過點F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根據勾股定理得,,∴DE=DF=,故答案為.【點睛】此題是幾何變換綜合題,主要考查了旋轉的性質,全等三角形的判定和性質,勾股定理,構造全等三角形和直角三角形是解本題的關鍵.21、(1)y=2x+2(2)這位乘客乘車的里程是15km【解析】

(1)根據函數圖象可以得出出租車的起步價是8元,設當x>3時,y與x的函數關系式為y=kx+b(k≠0),運用待定系數法就可以求出結論;

(2)將y=32代入(1)的解析式就可以求出x的值.【詳解】(1)由圖象得:出租車的起步價是8元;設當x>3時,y與x的函數關系式為y=kx+b(k≠0),由函數圖象,得,解得:故y與x的函數關系式為:y=2x+2;(2)∵32元>8元,∴當y=32時,32=2x+2,x=15答:這位乘客乘車的里程是15km.22、(1)見解析;(2)【解析】

(1)根據矩形的性質可得AB=CD,∠C=∠A=90°,再根據折疊的性質可得DE=CD,∠C=∠E=90°,然后利用“角角邊”證明即可;

(2)設AF=x,則BF=DF=8-x,根據勾股定理列方程求解即可.【詳解】(1)證明:在矩形ABCD中,AB=CD,∠A=∠C=90°,由折疊得:DE=CD,∠C=∠E=90°,∴AB=DE,∠A=∠E=90°,∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS);(2)解:∵△ABF≌△EDF,∴BF=DF,設AF=x,則BF=DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2,即(8﹣x)2=x2+62,x=,即AF=【點睛】本題考查了翻折變換的性質,全等三角形的判定與性質,矩形的性質,勾股定理,翻折前后對應邊相等,對應角相等,利用勾股定理列出方程是解題的關鍵.23、證明見解析【解析】

首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【點睛】本題考查了全等三角形的判定與性質與平行四邊形的判定,解題的關鍵是熟練的掌握全等三角形的判定與性質與平行四邊形的判定.24、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【解析】

(1)∵,∴,∴a=m2+3n2,b=2mn.故答案為m2+3n2,2mn.(2)設m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案為1,2,1,2(答案不唯一).(3)由題意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n為正整數,∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.25、(1)證明見解析;(2)BP=1.【解析】分析:(1)連接OB,如圖,根據圓周角定理得到∠ABD=90°,再根據切線的性質得到∠OBC=90°,然后利用等量代換進行證明;(2)證明△AOP∽△ABD,然后利用相似比求BP的長.詳(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論