




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
拉薩市2025屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,且,則()A.2 B.3C.5 D.82.已知f(x)是定義在R上的函數(shù),且f(2)=2,,則f(x)>x的解集是()A. B.C. D.3.高中生在假期參加志愿者活動,既能服務(wù)社會又能鍛煉能力.某同學(xué)計劃在福利院、社區(qū)、圖書館和醫(yī)院中任選兩個單位參加志愿者活動,則參加圖書館活動的概率為()A. B.C. D.4.平面的法向量,平面的法向量,已知,則等于()A B.C. D.5.已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,且,點(diǎn)是拋物線的準(zhǔn)線上的一動點(diǎn),則的最小值為().A. B.C. D.6.等比數(shù)列的各項均為正數(shù),且,則A. B.C. D.7.如圖,過拋物線的焦點(diǎn)的直線交拋物線于點(diǎn),,交其準(zhǔn)線于點(diǎn),準(zhǔn)線與對稱軸交于點(diǎn),若,且,則此拋物線的方程為()A. B.C. D.8.如圖,已知二面角平面角的大小為,其棱上有、兩點(diǎn),、分別在這個二面角的兩個半平面內(nèi),且都與垂直.已知,,則()A. B.C. D.9.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.10.若直線與平行,則實(shí)數(shù)m等于()A.0 B.1C.4 D.0或411.已知遞增等比數(shù)列的前n項和為,,且,則與的關(guān)系是()A. B.C. D.12.在下列命題中正確的是()A.已知是空間三個向量,則空間任意一個向量總可以唯一表示為B.若所在的直線是異面直線,則不共面C.若三個向量兩兩共面,則共面D.已知A,B,C三點(diǎn)不共線,若,則A,B,C,D四點(diǎn)共面二、填空題:本題共4小題,每小題5分,共20分。13.如圖,把正方形紙片沿對角線折成直二面角,則折紙后異面直線,所成的角為___________.14.已知點(diǎn)為橢圓上的動點(diǎn),為圓的任意一條直徑,則的最大值是__________15.一個高為2的圓柱,底面周長為2,該圓柱的表面積為.16.如圖,某河流上有一座拋物線形的拱橋,已知橋的跨度米,高度米(即橋拱頂?shù)交诘闹本€的距離).由于河流上游降雨,導(dǎo)致河水從橋的基座處開始上漲了1米,則此時橋洞中水面的寬度為______米三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和.18.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(diǎn)(1)求證:平面;(2)在線段上是否存在一點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由19.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時,求實(shí)數(shù)a的取值范圍;若命題q為假時,求實(shí)數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實(shí)數(shù)a的取值范圍20.(12分)已知函數(shù).(1)當(dāng)時,解不等式;(2)若不等式的解集為,求實(shí)數(shù)的取值范圍.21.(12分)已知橢圓的離心率為,橢圓過點(diǎn).(1)求橢圓C的方程;(2)過點(diǎn)的直線交橢圓于M、N兩點(diǎn),已知直線MA,NA分別交直線于點(diǎn)P,Q,求的值.22.(10分)在平面直角坐標(biāo)系中,橢圓的離心率為,且點(diǎn)在橢圓C上(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),試探究直線上是否存在定點(diǎn)Q,使得為定值.若存在,求出定點(diǎn)Q的坐標(biāo)及實(shí)數(shù)的值;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】使用遞推公式逐個求解,直到求出即可.【詳解】因為所以,,,.故選:D2、D【解析】構(gòu)造,結(jié)合已知有在R上遞增且,原不等式等價于,利用單調(diào)性求解集.【詳解】令,由題設(shè)知:,即在R上遞增,又,所以f(x)>x等價于,即.故選:D3、D【解析】對4個單位分別編號,利用列舉法求出概率作答.【詳解】記福利院、社區(qū)、圖書館和醫(yī)院分別為A,B,C,D,從4個單位中任選兩個的試驗有AB,AC,AD,BC,BD,CD,共6個基本事件,它們等可能,其中有參加圖書館活動的事件有AC,BC,CD,共3個基本事件,所以參加圖書館活動的概率.故選:D4、A【解析】根據(jù)兩個平面平行得出其法向量平行,根據(jù)向量共線定理進(jìn)行計算即可.【詳解】由題意得,因為,所以(),即,解得,所以.故選:A5、A【解析】求出點(diǎn)坐標(biāo),做出關(guān)于準(zhǔn)線的對稱點(diǎn),利用連點(diǎn)之間相對最短得出為的最小值【詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點(diǎn)縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點(diǎn)關(guān)于準(zhǔn)線的對稱點(diǎn)為,連接,則,于是故的最小值為故選:A【點(diǎn)睛】本題考查了拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題6、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進(jìn)而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點(diǎn)睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.7、B【解析】根據(jù)拋物線定義,結(jié)合三角形相似以及已知條件,求得,則問題得解.【詳解】根據(jù)題意,過作垂直于準(zhǔn)線,垂足為,過作垂直于準(zhǔn)線,垂足為,如下所示:因為,又//,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.8、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.9、D【解析】對選項A,令即可檢驗;對選項B,令即可檢驗;對選項C,令即可檢驗;對選項D,設(shè)出等差數(shù)列的首項和公比,然后作差即可.【詳解】若,則可得:,故選項A錯誤;若,則可得:,故選項B錯誤;若,則可得:,故選項C錯誤;不妨設(shè)的首項為,公差為,則有:則有:,故選項D正確故選:D10、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.11、D【解析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D12、D【解析】對于A,利用空間向量基本定理判斷,對于B,利用向量的定義判斷,對于C,舉例判斷,對于D,共面向量定理判斷【詳解】對于A,若三個向量共面,在平面,則空間中不在平面的向量不能用表示,所以A錯誤,對于B,因為向量是自由向量,是可以自由平移,所以當(dāng)所在的直線是異面直線時,有可能共面,所以B錯誤,對于C,當(dāng)三個向量兩兩共面時,如空間直角坐標(biāo)系中的3個基向量兩兩共面,但這3個向量不共面,所以C錯誤,對于D,因為A,B,C三點(diǎn)不共線,,且,所以A,B,C,D四點(diǎn)共面,所以D正確,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##30°【解析】過點(diǎn)E作CE∥AB,且使得CE=AB,則四邊形ABEC是平行四邊形,進(jìn)而(或其補(bǔ)角)是所求角,算出答案即可.【詳解】過點(diǎn)E作CE∥AB,且使得CE=AB,則四邊形ABEC是平行四邊形,設(shè)所求角為,于是.設(shè)原正方形ABCD邊長為2,取AC的中點(diǎn)O,連接DO,BO,則且,而平面平面,且交于AC,所以平面ABEC,則.易得,,,而則于是,,.在中,,取DE的中點(diǎn)F,則,所以,即,于是.故答案為:.14、【解析】設(shè)點(diǎn),則且,計算得出,再利用二次函數(shù)的基本性質(zhì)即可求得的最大值.【詳解】解:圓的圓心為,半徑長為,設(shè)點(diǎn),由點(diǎn)為橢圓上的動點(diǎn),可得:且,由為圓的任意一條直徑可得:,,,,,當(dāng)時,取得最大值,即.故答案為:.15、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.16、【解析】以橋的頂點(diǎn)為坐標(biāo)原點(diǎn),水平方向所在直線為x軸建立直角坐標(biāo)系,則根據(jù)點(diǎn)在拋物線上,可得拋物線的方程,設(shè)水面與橋的交點(diǎn)坐標(biāo)為,求出,進(jìn)而可得水面的寬度.【詳解】以橋的頂點(diǎn)為坐標(biāo)原點(diǎn),水平方向所在直線為x軸建立直角坐標(biāo)系,則拋物線的方程為,因為點(diǎn)在拋物線上,所以,即故拋物線的方程為,設(shè)河水上漲1米后,水面與橋的交點(diǎn)坐標(biāo)為,則,得,所以此時橋洞中水面的寬度為米故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)先通過等比數(shù)列的基本量運(yùn)算求出公比,進(jìn)而求出通項公式;(2)結(jié)合(1)求出,然后根據(jù)錯位相減法求得答案.【小問1詳解】設(shè)等比數(shù)列公比為q,,,,(負(fù)值舍去),所以.【小問2詳解】,,所以,解得:.18、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標(biāo)系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設(shè),求出,結(jié)合已知條件可列出關(guān)于的方程,從而可求出的值.【詳解】證明:過作于點(diǎn),則,以為原點(diǎn),,,所在的直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系則,,,
,,,∵為的中點(diǎn).∴.則,,,設(shè)平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設(shè),∴.∴,∴
.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡得,即,∵,∴,故【點(diǎn)睛】本題考查了利用空間向量證明線面平行,考查了平面法向量的求解,屬于中檔題.19、(1)p為真時或,q為假時;(2){或}.【解析】(1)p為真應(yīng)用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應(yīng)的參數(shù)范圍.(2)由題設(shè)易得p、q一真一假,討論p、q的真假,結(jié)合(1)的結(jié)果求a的取值范圍【小問1詳解】若p真,則有實(shí)數(shù)根,∴,解得或若q為真,則,即故q為假時,實(shí)數(shù)a的取值范圍為【小問2詳解】∵命題真命題,命題為假命題,∴p,q一真一假,當(dāng)p真q假時,,可得當(dāng)p假q真時,,可得綜上,實(shí)數(shù)a取值范圍為或.20、(1);(2).【解析】(1)將不等式分解因式,即可求得不等式解集;(2)根據(jù)不等式解集,考慮其對應(yīng)二次函數(shù)的特征,即可求出參數(shù)的范圍.【小問1詳解】當(dāng)時,即,也即,則,解得或,故不等式解集為.【小問2詳解】不等式的解集為,即的解集為,也即的解集為,故其對應(yīng)二次函數(shù)的,解得.故實(shí)數(shù)的取值范圍為:.21、(1)(2)1【解析】(1)由題意得到關(guān)于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點(diǎn)P,Q的縱坐標(biāo),將線段長度的比值轉(zhuǎn)化為縱坐標(biāo)比值的問題,進(jìn)一步結(jié)合韋達(dá)定理可證得,從而可得兩線段長度的比值.【小問1詳解】由題意,點(diǎn)橢圓上,有,解得故橢圓C的方程為.【小問2詳解】當(dāng)直線l的斜率不存在時,顯然不符;當(dāng)直線l的斜率存在時,設(shè)直線l為:聯(lián)立方程得:由,設(shè),有又由直線AM:,令x=-4得,將代入得:,同理得:.很明顯,且,注意到,,而,故所以.【點(diǎn)睛】本題考查求橢圓的方程,解題關(guān)鍵是利用離心率與橢圓上的點(diǎn),找到關(guān)于a,b,c的等量關(guān)系求解a與b.本題中直線方程代入橢圓方程整理后應(yīng)用韋達(dá)定理求出,.表示出,,然后轉(zhuǎn)化為相應(yīng)的比值關(guān)系.考查了學(xué)生的運(yùn)算求解能力,邏輯推理能力.屬于中檔題22、(1)(2)存在,定點(diǎn)的坐標(biāo)為,實(shí)數(shù)的值為【解析】(1)由題意可得,再結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國個人護(hù)理電器行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢及投資規(guī)劃深度研究報告
- 2025至2030中國CBD油和CBD提取設(shè)備行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025-2030年自動恒溫烘箱行業(yè)市場發(fā)展分析與發(fā)展前景及投資戰(zhàn)略研究報告
- 2025-2030年第三方物流行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025-2030年朗姆酒行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資管理策略研究報告
- 上海生物醫(yī)藥創(chuàng)新調(diào)研報告
- 倉儲物流場地租賃改造與智能化升級服務(wù)合同
- 深度剖析協(xié)議離婚利弊對比分析合同
- 沉井施工安全責(zé)任及監(jiān)督管理合同
- 旅游景點(diǎn)環(huán)境清潔臨時用工協(xié)議范本
- 初級銀行從業(yè)資格考試《個人貸款》新版真題卷(2025年含答案)
- 民航飛行員招飛心理測試題及答案
- 生地考試測試題及答案
- 《動物保定技術(shù)》課件
- 2025年出版:全球市場光伏硅膠總體規(guī)模、主要生產(chǎn)商、主要地區(qū)、產(chǎn)品和應(yīng)用細(xì)分調(diào)研報告
- 北京市朝陽區(qū)2023-2024學(xué)年四年級下學(xué)期語文期末考試卷(含答案)
- GB/T 45385-2025燃?xì)馊紵骱腿紵骶哂冒踩涂刂蒲b置特殊要求排氣閥
- 留學(xué)機(jī)構(gòu)合作協(xié)議書范本
- 太極拳教學(xué)合同協(xié)議
- 家校社協(xié)同勞動教育實(shí)施現(xiàn)狀與對策研究
- 國家開放大學(xué)《農(nóng)村經(jīng)濟(jì)管理》形考任務(wù)1-4參考答案
評論
0/150
提交評論