2024屆上海市崇明區崇明中學高三第五次模擬考試數學試題_第1頁
2024屆上海市崇明區崇明中學高三第五次模擬考試數學試題_第2頁
2024屆上海市崇明區崇明中學高三第五次模擬考試數學試題_第3頁
2024屆上海市崇明區崇明中學高三第五次模擬考試數學試題_第4頁
2024屆上海市崇明區崇明中學高三第五次模擬考試數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市崇明區崇明中學高三第五次模擬考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數,則使得成立的的取值范圍是().A. B.C. D.2.函數()的圖像可以是()A. B.C. D.3.很多關于整數規律的猜想都通俗易懂,吸引了大量的數學家和數學愛好者,有些猜想已經被數學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數,如果它是奇數,則將它乘以再加1;如果它是偶數,則將它除以;如此循環,最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.4.已知是虛數單位,若,則()A. B.2 C. D.105.已知全集,則集合的子集個數為()A. B. C. D.6.若函數f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調遞減區間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]7.已知為等差數列,若,,則()A.1 B.2 C.3 D.68.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結論正確的是()A. B. C. D.9.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.10.中國古代數學著作《算法統宗》中有這樣一個問題;“三百七十八里關,初行健步不為難,次后腳痛遞減半,六朝才得到其關,要見每朝行里數,請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里11.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.312.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.在直角坐標系中,直線的參數方程為(為參數),曲線的參數方程為(為參數).(1)求直線和曲線的普通方程;(2)設為曲線上的動點,求點到直線距離的最小值及此時點的坐標.15.在區間內任意取一個數,則恰好為非負數的概率是________.16.若變量,滿足約束條件則的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中為自然對數的底數.(1)若函數在區間上是單調函數,試求的取值范圍;(2)若函數在區間上恰有3個零點,且,求的取值范圍.18.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.19.(12分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.20.(12分)已知橢圓,上頂點為,離心率為,直線交軸于點,交橢圓于,兩點,直線,分別交軸于點,.(Ⅰ)求橢圓的方程;(Ⅱ)求證:為定值.21.(12分)已知函數,.(1)當時,判斷是否是函數的極值點,并說明理由;(2)當時,不等式恒成立,求整數的最小值.22.(10分)已知函數.(1)討論的單調性并指出相應單調區間;(2)若,設是函數的兩個極值點,若,且恒成立,求實數k的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由奇偶性定義可判斷出為偶函數,由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【詳解】由題意知:定義域為,,為偶函數,當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數的單調性和奇偶性求解函數不等式的問題;奇偶性的作用是能夠確定對稱區間的單調性,單調性的作用是能夠將函數值的大小關系轉化為自變量的大小關系,進而化簡不等式.2、B【解析】

根據,可排除,然后采用導數,判斷原函數的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數在單調遞減在單調遞增,故選:B【點睛】本題考查函數的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.3、B【解析】

根據程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數成立,則,;不成立,是偶數不成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;成立,跳出循環,輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.4、C【解析】

根據復數模的性質計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復數模的定義及復數模的性質,屬于容易題.5、C【解析】

先求B.再求,求得則子集個數可求【詳解】由題=,則集合,故其子集個數為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數,熟練掌握各自的定義是解本題的關鍵,是基礎題6、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調遞減,在[2,+∞)上單調遞增,所以f(x)在(-∞,2]上單調遞增,在[2,+∞)上單調遞減,故選B.7、B【解析】

利用等差數列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數列通項公式求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.8、D【解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,,,,0,,,1,,,,,,,設平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.9、A【解析】

畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.10、C【解析】

設第一天走里,則是以為首項,以為公比的等比數列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數列的某一項的求法,考查等比數列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是基礎題.11、C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;12、C【解析】

由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關系,從而得到漸近線的斜率.【詳解】根據題意,點P一定在左支上.由及,得,,再結合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎題.14、(1),;(2),.【解析】

(1)利用代入消參的方法即可將兩個參數方程轉化為普通方程;(2)利用參數方程,結合點到直線的距離公式,將問題轉化為求解二次函數最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數方程中,,所以曲線的普通方程為.(2)設點.點到直線的距離.當時,,所以點到直線的距離的最小值為.此時點的坐標為.【點睛】本題考查將參數方程轉化為普通方程,以及利用參數方程求距離的最值問題,屬中檔題.15、【解析】

先分析非負數對應的區間長度,然后根據幾何概型中的長度模型,即可求解出“恰好為非負數”的概率.【詳解】當是非負數時,,區間長度是,又因為對應的區間長度是,所以“恰好為非負數”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關鍵是能判斷出目標事件對應的區間長度.16、9【解析】

做出滿足條件的可行域,根據圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數過點時取得最大值,聯立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區域,利用數形結合求線性目標函數的最值,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區間內恰有一個零點,轉化為在區間內恰有兩個零點,由(1)的結論對分類討論,根據單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數在區間上單調遞增時,在區間上恒成立.∴(其中),解得.當函數在區間上單調遞減時,在區間上恒成立,∴(其中),解得.綜上所述,實數的取值范圍是.(2).由,知在區間內恰有一個零點,設該零點為,則在區間內不單調.∴在區間內存在零點,同理在區間內存在零點.∴在區間內恰有兩個零點.由(1)易知,當時,在區間上單調遞增,故在區間內至多有一個零點,不合題意.當時,在區間上單調遞減,故在區間內至多有一個零點,不合題意,∴.令,得,∴函數在區間上單凋遞減,在區間上單調遞增.記的兩個零點為,∴,必有.由,得.∴又∵,∴.綜上所述,實數的取值范圍為.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、零點問題,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.18、(1)(2)特征值為或.【解析】

(1)先設矩陣,根據,按照運算規律,即可求出矩陣.(2)令矩陣的特征多項式等于,即可求出矩陣的特征值.【詳解】解:(1)設矩陣由題意,因為,所以,即所以,(2)矩陣的特征多項式,令,解得或,所以矩陣的特征值為1或.【點睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學生的劃歸與轉化能力和運算求解能力.19、(1)(2)【解析】

(1)運用三角形面積公式求出的長度,然后再運用余弦定理求出的長.(2)運用正弦定理分別表示出和,結合已知條件計算出結果.【詳解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【點睛】本題考查了正弦定理、三角形面積公式以及余弦定理,結合三角形熟練運用各公式是解題關鍵,此類題目是常考題型,能夠運用公式進行邊角互化,需要掌握解題方法.20、(Ⅰ);(Ⅱ),證明見解析.【解析】

(Ⅰ)根據題意列出關于,,的方程組,解出,,的值,即可得到橢圓的方程;(Ⅱ)設點,,點,,易求直線的方程為:,令得,,同理可得,所以,聯立直線與橢圓方程,利用韋達定理代入上式,化簡即可得到.【詳解】(Ⅰ)解:由題意可知:,解得,橢圓的方程為:;(Ⅱ)證:設點,,點,,聯立方程,消去得:,,①,點,,,直線的方程為:,令得,,,,同理可得,,,把①式代入上式得:,為定值.【點睛】本題主要考查直線與橢圓的位置關系、定值問題的求解;關鍵是能夠通過直線與橢圓聯立得到韋達定理的形式,利用韋達定理化簡三角形面積得到定值;考查計算能力與推理能力,屬于中檔題.21、(1)是函數的極大值點,理由詳見解析;(2)1.【解析】

(1)將直接代入,對求導得,由于函數單調性不好判斷,故而構造函數,繼續求導,判斷導函數在左右兩邊的正負情況,最后得出,是函數的極大值點;(2)利用題目已有條件得,再證明時,不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論