山東省藁城市第一中學2025屆高三數學第一學期期末學業質量監測模擬試題含解析_第1頁
山東省藁城市第一中學2025屆高三數學第一學期期末學業質量監測模擬試題含解析_第2頁
山東省藁城市第一中學2025屆高三數學第一學期期末學業質量監測模擬試題含解析_第3頁
山東省藁城市第一中學2025屆高三數學第一學期期末學業質量監測模擬試題含解析_第4頁
山東省藁城市第一中學2025屆高三數學第一學期期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省藁城市第一中學2025屆高三數學第一學期期末學業質量監測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《普通高中數學課程標準(2017版)》提出了數學學科的六大核心素養.為了比較甲、乙兩名高二學生的數學核心素養水平,現以六大素養為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優),則下面敘述正確的是()A.甲的數據分析素養高于乙B.甲的數學建模素養優于數學抽象素養C.乙的六大素養中邏輯推理最差D.乙的六大素養整體平均水平優于甲2.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.3.設函數滿足,則的圖像可能是A. B.C. D.4.如圖,在直三棱柱中,,,點分別是線段的中點,,分別記二面角,,的平面角為,則下列結論正確的是()A. B. C. D.5.設為的兩個零點,且的最小值為1,則()A. B. C. D.6.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.47.設函數恰有兩個極值點,則實數的取值范圍是()A. B.C. D.8.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.9.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.10.設集合則()A. B. C. D.11.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數是()A. B. C. D.12.方程的實數根叫作函數的“新駐點”,如果函數的“新駐點”為,那么滿足()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,則第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為_____________.14.已知函數,若關于x的方程有且只有兩個不相等的實數根,則實數a的取值范圍是_______________.15.已知多項式的各項系數之和為32,則展開式中含項的系數為______.16.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.18.(12分)某網絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當天銷售額的平均值;(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在中的個數的分布列和數學期望.19.(12分)已知函數,.(1)當時,討論函數的單調性;(2)若,當時,函數,求函數的最小值.20.(12分)已知函數.(1)當時.①求函數在處的切線方程;②定義其中,求;(2)當時,設,(為自然對數的底數),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.21.(12分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.22.(10分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數據分析分,乙的數據分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養分,乙的建模素養分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養整體平均水平優于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數據處理,屬于基礎題.2、C【解析】

由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題3、B【解析】根據題意,確定函數的性質,再判斷哪一個圖像具有這些性質.由得是偶函數,所以函數的圖象關于軸對稱,可知B,D符合;由得是周期為2的周期函數,選項D的圖像的最小正周期是4,不符合,選項B的圖像的最小正周期是2,符合,故選B.4、D【解析】

過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法求解二面角的余弦值得答案.【詳解】解:因為,,所以,即過點作,以為原點,為軸,為軸,為軸,建立空間直角坐標系,則,0,,,,,,0,,,1,,,,,,,設平面的法向量,則,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故選:D.【點睛】本題考查二面角的大小的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題.5、A【解析】

先化簡已知得,再根據題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點睛】本題考查了三角恒等變換和三角函數的圖象與性質的應用問題,是基礎題.6、C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.7、C【解析】

恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導數判斷函數值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數在上單調遞增,從而,且.所以,當且時,恰有兩個極值點,即實數的取值范圍是.故選:C【點睛】本題考查利用導數研究函數的單調性與極值,函數與方程的應用,屬于中檔題.8、C【解析】

直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數的求法,考查拋物線的性質,是中檔題,解題時要注意等價轉化思想的合理運用,屬于中檔題.9、D【解析】

由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.10、C【解析】

直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.11、B【解析】

①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.12、D【解析】

由題設中所給的定義,方程的實數根叫做函數的“新駐點”,根據零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數根叫做函數的“新駐點”,對于函數,由于,,設,該函數在為增函數,,,在上有零點,故函數的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,由此能求出概率.【詳解】解:從編號為,,,的張卡片中隨機抽取一張,放回后再隨機抽取一張,基本事件總數,第二次抽得的卡片上的數字能被第一次抽得的卡片上數字的基本事件有8個,分別為:,,,,,,,.所以第二次抽得的卡片上的數字能被第一次抽得的卡片上數字整除的概率為.故答案為.【點睛】本題考查概率的求法,考查古典概型、列舉法等基礎知識,屬于基礎題.14、【解析】

畫出函數的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍.【詳解】函數的圖象如圖所示:因為方程有且只有兩個不相等的實數根,所以圖象與直線有且只有兩個交點即可,當過點時兩個函數有一個交點,即時,與函數有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:.【點睛】本題主要考查了方程的跟與函數的圖象交點的轉化,數形結合的思想,屬于中檔題.15、【解析】

令可得各項系數和為,得出,根據第一個因式展開式的常數項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:【點睛】本題主要考查了二項展開式的系數和,二項展開式特定項,賦值法,屬于中檔題.16、丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點:反證法在推理中的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)11202.【解析】

(1)由n,,成等差數列,可得,,兩式相減,由等比數列的定義可得是等比數列,可求數列的通項公式;(2)由(1)中的可求出,根據和求出數列,中的公共項,分組求和,結合等比數列和等差數列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數列是首項為2,公比為2的等比數列,所以,即.(2)根據(1)求解知,,,所以,所以數列是以1為首項,2為公差的等差數列.又因為,,,,,,,,,,,所以.【點睛】本題考查等比數列的定義,考查分組求和,屬于中檔題.18、(1)元;(2)32家;(3)分布列見解析;【解析】

(1)根據頻率分布直方圖求出各組頻率,再由平均數公式,即可求解;(2)求出的頻率即可;(3)中的個數的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數學期望【點睛】本題考查應用頻率分布直方圖求平均數和頻數,考查離散型隨機變量的分布列和期望,屬于基礎題.19、(1)見解析(2)的最小值為【解析】

(1)由題可得函數的定義域為,,當時,,令,可得;令,可得,所以函數在上單調遞增,在上單調遞減;當時,令,可得;令,可得或,所以函數在,上單調遞增,在上單調遞減;當時,恒成立,所以函數在上單調遞增.綜上,當時,函數在上單調遞增,在上單調遞減;當時,函數在,上單調遞增,在上單調遞減;當時,函數在上單調遞增.(2)方法一:當時,,,設,,則,所以函數在上單調遞減,所以,當且僅當時取等號.當時,設,則,所以,設,,則,所以函數在上單調遞減,且,,所以存在,使得,所以當時,;當時,,所以函數在上單調遞增,在上單調遞減,因為,,所以,所以,當且僅當時取等號.所以當時,函數取得最小值,且,故函數的最小值為.方法二:當時,,,則,令,,則,所以函數在上單調遞增,又,所以存在,使得,所以函數在上單調遞減,在上單調遞增,因為,所以當時,恒成立,所以當時,恒成立,所以函數在上單調遞減,所以函數的最小值為.20、(1)①;②8079;(2).【解析】

(1)①時,,,利用導數的幾何意義能求出函數在處的切線方程.②由,得,由此能求出的值.(2)根據若對任意給定的,,在區間,上總存在兩個不同的,使得成立,得到函數在區間,上不單調,從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因為①,所以②,由①+②得,所以.所以.(2),當時,函數單調遞增;當時,,函數單調遞減∵,,所以,函數在上的值域為.因為,,故,,①此時,當變化時、的變化情況如下:—0+單調減最小值單調增∵,,∴對任意給定的,在區間上總存在兩個不同的,使得成立,當且僅當滿足下列條件,即令,,,當時,,函數單調遞增,當時,,函數單調遞減所以,對任意,有,即②對任意恒成立.由③式解得:④綜合①④可知,當時,對任意給定的,在上總存在兩個不同的,使成立.【點睛】本題考查了導數的幾何意義、應用導數研究函數的單調性、求函數最值問題,會利用導函數的正負確定函數的單調性,會根據函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論