




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市楊思高中2025屆高一數學第一學期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數的圖像過點和,則在定義域上是A.奇函數 B.偶函數C.減函數 D.增函數2.如果且,那么直線不經過()A第一象限 B.第二象限C.第三象限 D.第四象限3.在下列給出的函數中,以為周期且在區間內是減函數的是()A. B.C. D.4.已知,,則()A. B.C. D.5.長方體的一個頂點上的三條棱長分別為3、4、5,且它的8個頂點都在同一個球面上,則這個球的表面積是()A. B.C. D.都不對6.已知過點和的直線與直線平行,則的值為()A. B.0C.2 D.107.設函數,則的值是A.0 B.C.1 D.28.將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是A.事件“甲分得1張白牌”與事件“乙分得1張紅牌”B.事件“甲分得1張紅牌”與事件“乙分得1張藍牌”C.事件“甲分得1張白牌”與事件“乙分得2張白牌”D.事件“甲分得2張白牌”與事件“乙分得1張黑牌”9.函數的單調遞減區間是()A.() B.()C.() D.()10.已知函數與的圖像關于對稱,則()A.3 B.C.1 D.二、填空題:本大題共6小題,每小題5分,共30分。11.正實數a,b,c滿足a+2-a=2,b+3b=3,c+=4,則實數a,b,c之間的大小關系為_________.12.在中,角、、所對的邊為、、,若,,,則角________13.已知偶函數,x∈R,滿足f(1-x)=f(1+x),且當0<x<1時,f(x)=ln(x+),e為自然數,則當2<x<3時,函數f(x)的解析式為______14.正三棱錐P﹣ABC的底面邊長為1,E,F,G,H分別是PA,AC,BC,PB的中點,四邊形EFGH的面積為S,則S的取值范圍是__15.命題“,使”是真命題,則的取值范圍是________16.設函數,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,等腰梯形ABCD中,,角,,,F在線段BC上運動,過F且垂直于線段BC的直線l將梯形ABCD分為左、右兩個部分,設左邊部分含點B的部分面積為y分別求當與時y的值;設,試寫出y關于x的函數解析18.已知直線,直線經過點,且(1)求直線的方程;(2)記與軸相交于點,與軸相交于點,與相交于點,求的面積19.已知函數的圖象過點,且滿足(1)求函數的解析式:(2)求函數在上最小值;(3)若滿足,則稱為函數的不動點,函數有兩個不相等且正的不動點,求t的取值范圍20.已知圓,點是直線上的一動點,過點作圓的切線,切點為.(1)當切線的長度為時,求線段PM長度.(2)若的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由;(3)求線段長度的最小值21.如圖所示四棱錐中,底面,四邊形中,,,,求四棱錐的體積;求證:平面;在棱上是否存在點異于點,使得平面,若存在,求的值;若不存在,說明理由
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】∵f(x)的圖象過點(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函數.∵f(x)的定義域是(3,+∞),不關于原點對稱.∴f(x)為非奇非偶函數故選D2、C【解析】由條件可得直線的斜率的正負,直線在軸上的截距的正負,進而可得直線不經過的象限【詳解】解:由且,可得直線斜率為,直線在y軸上的截距,故直線不經過第三象限,故選C【點睛】本題主要考查確定直線位置的幾何要素,屬于基礎題3、B【解析】的最小正周期為,故A錯;的最小正周期為,當時,,所以在上為減函數,故B對;的最小正周期為,當時,,所以在上為增函數,故C錯;的最小正周期為,,所以在不單調.綜上,選B.4、D【解析】由同角三角函數的平方關系計算即可得出結果.【詳解】因為,,,,所以.故選:D5、B【解析】由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積【詳解】解:長方體的一個頂點上的三條棱長分別是3,4,5,且它的8個頂點都在同一個球面上,所以長方體的對角線就是球的直徑,長方體的對角線為:,所以球的半徑為:;則這個球的表面積是:故選:6、A【解析】因為過點和的直線與直線平行,所以兩直線的斜率相等.【詳解】解:∵直線的斜率等于,∴過點和的直線的斜率也是,,解得,故選:A.【點睛】本題考查兩斜率存在的直線平行的條件是斜率相等,以及斜率公式的應用.7、C【解析】,所以,故選C考點:分段函數8、C【解析】對于,事件“甲分得1張白牌”與事件“乙分得1張紅牌”可以同時發生,不是互斥事件;對于事件“甲分得1張紅牌”與事件“乙分得1張藍牌”可能同時發生,不是互斥事件;對于,事件“甲分得2張白牌”與事件“乙分得1張黑牌”能同時發生,不是互斥事件;但中的兩個事件不可能發生,是互斥事件,故選C.9、A【解析】根據余弦函數單調性,解得到答案.【詳解】解:,令,,解得,,故函數的單調遞減區間為;故選:A.10、B【解析】根據同底的指數函數和對數函數互為反函數可解.【詳解】由題知是的反函數,所以,所以.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】利用指數的性質及已知條件求a、b的范圍,討論c的取值范圍,結合對數的性質求c的范圍【詳解】由,由,又,當時,,顯然不成立;當時,,不成立;當時,;綜上,.故答案為:12、.【解析】利用余弦定理求出的值,結合角的取值范圍得出角的值.【詳解】由余弦定理得,,,故答案為.【點睛】本題考查余弦定理的應用和反三角函數,解題時要充分結合元素類型選擇正弦定理和余弦定理解三角形,考查計算能力,屬于中等題.13、【解析】由f(1-x)=f(1+x),再由偶函數性質得到函數周期,再求當2<x<3時f(x)解析式【詳解】因為f(x)是偶函數,滿足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2當2<x<3時,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函數f(x)的解析式為f(x)=ln(x-2+)故答案為f(x)=ln(x-2+)【點睛】本題主要考查函數的奇偶性,考查利用函數的周期性求解析式,意在考查學生對這些知識的理解掌握水平和分析推理能力.14、(,+∞)【解析】由正三棱錐可得四邊形EFGH為矩形,并可得其邊長與三棱錐棱長關系,從而可得面積S的范圍.【詳解】∵棱錐P﹣ABC為底面邊長為1的正三棱錐∴AB⊥PC又∵E,F,G,H,分別是PA,AC,BC,PD的中點,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC則四邊形EFGH為一個矩形又∵PC,∴EF,∴S=EFEH,∴四邊形EFGH的面積S的取值范圍是(,+∞),故答案為:(,+∞)三、15、【解析】可根據題意得出“,恒成立”,然后根據即可得出結果.【詳解】因為命題“,使”是真命題,所以,恒成立,即恒成立,因為當時,,所以,的取值范圍是,故答案為:.16、【解析】先根據2的范圍確定表達式,求出;后再根據的范圍確定表達式,求出.【詳解】因為,所以,所以.【點睛】分段函數求值問題,要先根據自變量的范圍,確定表達式,然后代入求值.要注意由內而外求值,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)當時,,當時,;(2).【解析】過A作,M為垂足,過D作,N為垂足,則,由此能求出y的值;設,當時,,當時,;當時,由此能求出y關于x的函數解析【詳解】如圖,過A作,M為垂足,過D作,N為垂足,則,當時,,當時,設,當時,,當時,;當時,.【點睛】本題考查函數值、函數解析式的求法,考查函數性質、三角形及矩形形面積公式等基礎知識,考查運算求解能力,考查數形結合思想,是中檔題.18、(1);(2)【解析】(1)根據兩條直線垂直的斜率關系可得直線的斜率,代入求得截距,即可求得直線的方程.(2)根據題意分別求得的坐標,可得的長,由的縱坐標即可求得的面積【詳解】(1)由題意,則兩條直線的斜率之積為即直線的斜率為因為,所以可設將代入上式,解得即(2)在直線中,令,得,即在直線:中,令,得,即解方程組,得,,即則底邊的長為,邊上的高為故【點睛】本題考查了直線與直線垂直的斜率關系,直線與軸交點坐標,直線的交點坐標求法,屬于基礎題.19、(1);(2);(3).【解析】(1)根據f(x)圖像過點,且滿足列出關于m和n的方程組即可求解;(2)討論對稱軸與區間的位置關系,即可求二次函數的最小值;(3)由題可知方程x=g(x)有兩個正根,根據韋達定理即可求出t范圍.【小問1詳解】∵的圖象過點,∴①又,∴②由①②解,,∴;【小問2詳解】,,當,即時,函數在上單調遞減,∴;當,即時,函數在上單調遞減,在單調遞增,∴;當時,函數在上單調遞增,∴綜上,【小問3詳解】設有兩個不相等的不動點、,且,,∴,即方程有兩個不相等的正實根、∴,解得20、(1)8(2)(3)【解析】(1)根據圓中切線長的性質得到;(2)設,經過A,P,M三點的圓N以MP為直徑,圓N的方程為化簡求值即可;(3)(Ⅲ)求出點M到直線AB的距離,利用勾股定理,即可求線段AB長度的最小值.解析:(1)由題意知,圓M的半徑r=4,圓心M(0,6),設PA是圓的一條切線,(2)設,經過A,P,M三點的圓N以MP為直徑,圓心,半徑為得圓N的方程為即,有由,解得或圓過定點(3)圓N的方程,即①圓即②②-①得:圓M與圓N相交弦AB所在直線方程為:圓心M(0,6)到直線AB的距離弦長當時,線段AB長度有最小值.點睛:這個題目考查的是直線和圓的位置關系,一般直線和圓的題很多情況下是利用數形結合來解決的,聯立的時候較少;再者在求圓上的點到直線或者定點的距離時,一般是轉化為圓心到直線或者圓心到定點的距離,再加減半徑,分別得到最大值和最小值;圓的問題經常應用的性質有垂徑定理的應用,切線長定理的應用.21、(1)4;(2)見解析;(3)不存在.【解析】利用四邊形是直角梯形,求出,結合底面,利用棱錐的體積公式求解即可求;先證明,,結合,利用線面垂直的判定定理可得平面;用反證法證明,假設存在點異于點使得平面證明平面平面,與平面與平面相交相矛盾,從而可得結論【詳解】顯然四邊形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年裝配式建筑部品部件標準化設計在裝配式建筑中的裝配式建筑應用前景報告
- 電商社群營銷試題及答案
- 新能源汽車電池技術的前沿探索試題及答案
- 物理多維思考題及答案2025年
- 新能源汽車技術的專利分析試題及答案
- 幼兒園簡單推理的數學試題及答案
- 安全工程師知識更新與學習試題及答案
- 幼兒園數字體驗學習試題及答案
- 學會透視2025年注冊土木工程師考試的試題及答案
- 山東高考純文試題及答案
- 大病歷模板-住院病歷
- GB/T 602-2002化學試劑雜質測定用標準溶液的制備
- GB/T 18657.1-2002遠動設備及系統第5部分:傳輸規約第1篇:傳輸幀格式
- GB/T 15608-2006中國顏色體系
- GB/T 14315-2008電力電纜導體用壓接型銅、鋁接線端子和連接管
- 中考語文二輪專題復習:散文和小說閱讀
- 《民法》全冊精講課件
- 【人衛九版內分泌科】第十一章-甲狀腺功能減退癥課件
- 護理人員業務技術檔案 模板
- 金融監管學-金融監管學課件
- 語文一年級上冊:拼音9《y-w》ppt教學課件
評論
0/150
提交評論