




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市西光中學2025屆高二上數學期末學業質量監測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數,,,則()A. B.C. D.2.若變量x,y滿足約束條件,則目標函數最大值為()A.1 B.-5C.-2 D.-73.圓與圓的位置關系是()A.外離 B.外切C.相交 D.內切4.已知直線與圓相交于兩點,當的面積最大時,的值是()A. B.C. D.5.如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A,B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為()A.y2=9x B.y2=6xC.y2=3x D.y2=x6.實數m變化時,方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線7.已知雙曲線的焦點為,,其漸近線上橫坐標為的點滿足,則()A. B.C.2 D.48.若函數在上為單調增函數,則m的取值范圍()A. B.C. D.9.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.10.“”是“直線與互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.下列關于斜二測畫法所得直觀圖的說法中正確的有()①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③菱形的直觀圖是菱形;④正方形的直觀圖是正方形.A.① B.①②C.③④ D.①②③④12.已知數列是等比數列,,是函數的兩個不同零點,則()A.16 B.C.14 D.二、填空題:本題共4小題,每小題5分,共20分。13.用數字1,2,3,4,5,6,7,8,9組成沒有重復數字,且至多有一個數字是奇數的四位數,這樣的四位數一共有___________個.(用數字作答)14.已知為橢圓C:的兩個焦點,P,Q為C上關于坐標原點對稱的兩點,且,則四邊形的面積為________15.已知,若共線,m+n=__.16.過點作圓的切線,則切線的方程為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)奮發學習小組共有3名學生,在某次探究活動中,他們每人上交了1份作業,現各自從這3份作業中隨機地取出了一份作業.(1)每個學生恰好取到自己作業的概率是多少?(2)每個學生不都取到自己作業的概率是多少?(3)每個學生取到的都不是自己作業的概率是多少?18.(12分)如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F分別為棱BC,CD的中點(1)求證:D1F平面A1EC1;(2)求直線AC1與平面A1EC1所成角的正弦值.19.(12分)已知圓,點.(1)若,半徑為的圓過點,且與圓相外切,求圓的方程;(2)若過點的兩條直線被圓截得的弦長均為,且與軸分別交于點、,,求.20.(12分)已知,命題p:對任意,不等式恒成立;命題q:存在,使得不等式成立;(1)若p為真命題,求a的取值范圍;(2)若為真命題,求a的取值范圍21.(12分)已知函數.其中e為然對數的底數(1)若,求函數的單調區間;(2)若,討論函數零點個數22.(10分)已知函數,是的一個極值點.(1)求b的值;(2)當時,求函數的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據導數得出在的單調性,進而由單調性得出大小關系.【詳解】因為,所以在上單調遞增.因為,所以,而,所以.因為,且,所以.即.故選:A2、A【解析】作出不等式組對應的平面區域,利用目標函數的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數,得,故選:A3、C【解析】利用圓心距與半徑的關系確定正確選項.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以兩圓相交.故選:C4、C【解析】利用點到直線的距離公式和弦長公式可以求出的面積是關于的一個式子,即可求出答案.【詳解】圓心到直線的距離,弦長為..當,即時,取得最大值.故選:C.5、C【解析】過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,利用拋物線的定義和平行線的性質、直角三角形求解【詳解】如圖,過點A,B分別作準線的垂線,交準線于點E,D,設|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因為|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選:C.6、B【解析】根據的取值分類討論說明【詳解】時方程化為,為直線,時,方程化為,為橢圓,時,方程化為,為雙曲線,而,因此曲線不可能是圓故選:B7、B【解析】由題意可設,則,再由,可得,從而可求出的值【詳解】解:雙曲線的漸近線方程為,故設,設,則,因為,所以,即,所以,因為,所以,因為,所以,故選:B8、B【解析】用函數單調性確定參數,使用參數分離法即可.【詳解】,在上是增函數,即恒成立,;設,;∴時,是增函數;時,是減函數;故時,,∴;故選:B.9、D【解析】解:,設F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D10、A【解析】根據兩直線垂直的性質求出,再結合充分條件和必要條件的定義即可得出答案.【詳解】解:因為直線與互相垂直,所以,解得或,所以“”是“直線與互相垂直”的充分不必要條件.故選:A.11、B【解析】根據斜二側直觀圖的畫法法則,直接判斷①②③④的正確性,即可推出結論【詳解】由斜二測畫法規則知:三角形的直觀圖仍然是三角形,所以①正確;根據平行性不變知,平行四邊形的直觀圖還是平行四邊形,所以②正確;根據兩軸的夾角為45°或135°知,菱形的直觀圖不再是菱形,所以③錯誤;根據平行于x軸的長度不變,平行于y軸的長度減半知,正方形的直觀圖不再是正方形,所以④錯誤.故選:B.12、B【解析】由題意得到,根據等比數列的性質得到,化簡,即可求解.【詳解】由,是函數的兩個不同零點,可得,根據等比數列的性質,可得則.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、504【解析】分兩種情況求解,一是四個數字中沒有奇數,二是四個數字中有一個奇數,然后根據分類加法原理可求得結果【詳解】當四個數字中沒有奇數時,則這樣的四位數有種,當四個數字中有一個奇數時,則從5個奇數中選一個奇數,再從4個偶數中選3個數,然后對這4個數排列即可,所以有種,所以由分類加法原理可得共有種,故答案為:50414、【解析】根據已知可得,設,利用勾股定理結合,求出,四邊形面積等于,即可求解.【詳解】因為為上關于坐標原點對稱的兩點,且,所以四邊形為矩形,設,則,所以,,即四邊形面積等于.故答案為:.15、【解析】根據空間向量平行的坐標運算求出m,n,進而求得答案.【詳解】由于,因為,所以存在,使得,于是,則.故答案為:.16、【解析】由已知可得點M在圓C上,則過M作圓的切線與CM所在的直線垂直,求出斜率,進而可得直線方程.【詳解】由圓得到圓心C的坐標為(0,
0),圓的半徑,而所以點M在圓C上,則過M作圓的切線與CM所在的直線垂直,又,得到CM所在直線的斜率為,所以切線的斜率為,則切線方程為:即故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據列舉法列出所有的可能基本事件,進而得出每個學生恰好拿到自己作業的概率;(2)利用對立事件的概念即可求得結果;(3)結合(1)即可得出每個學生拿的都不是自己作業的事件數.【小問1詳解】設這三個學生分別為A、B、C,A的作業為a,B的作業為b,C的作業為c,則基本事件為:,則基本事件總數為6,設每個學生恰好拿到自己作業為事件E,事件E包含的事件數為l,所以;小問2詳解】設每個學生不都拿到自己作業為事件F,因為事件F的對立事件為E,所以;【小問3詳解】設每個學生拿的都不是自己作業為事件G,事件G包含的事件數為2,.18、(1)證明見解析;(2).【解析】(1)建立空間直角坐標系,利用向量法證得平面.(2)利用向量法求得直線與平面所成角的正弦值.【詳解】(1)建立如圖所示空間直角坐標系.,,設平面的法向量為,則,故可設.由于,所以平面.(2)直線與平面所成角為,則.19、(1)或(2)【解析】(1)設圓心,根據已知條件可得出關于、的方程組,解出、的值,即可得出圓的方程;(2)分析可知直線、的斜率存在,設過點且斜率存在的直線的方程為,即,利用勾股定理可得出,可知直線、的斜率、是關于的二次方程的兩根,求出、的坐標,結合韋達定理可求得的值.【小問1詳解】解:設圓心,圓的圓心為,由題意可得,解得或,因此,圓的方程為或.【小問2詳解】解:若過點的直線斜率不存在,則該直線的方程為,圓心到直線的距離為,不合乎題意.設過點且斜率存在的直線的方程為,即,由題意可得,整理可得,設直線、的斜率分別為、,則、為關于的二次方程的兩根,,由韋達定理可得,,在直線的方程中,令,可得,即點在直線的方程中,令,可得,即點,所以,,解得.20、(1)(2)【解析】(1)利用判別式可求的取值范圍,注意就是否為零分類討論;(2)根據題設可得真或真,后者可用參變分離求出的取值范圍,結合(1)可求的取值范圍.【小問1詳解】當p為真命題時,當時,不等式顯然成立;當時,解得,故a取值范圍為.【小問2詳解】當q為真命題時,問題等價于存在,使得不等式成立,即,∵,當且僅當x=1時等號成立,∴因為為真命題,所以真或真,故a的取值范圍是21、(1)單調遞減區間為,單調遞增區間為和;(2)當時,無零點;當時,有1個零點;當時,有2個零點.【解析】(1)求導,令導數大于零求增區間,令導數小于零求減區間;(2)求導數,分、、a>2討論函數f(x)單調性和零點即可.【小問1詳解】當時,,易知定義域為R,,當時,;當或時,故的單調遞減區間為,單調遞增區間為和;【小問2詳解】當時,x正0負0正單增極大值單減極小值單增當時,恒成立,∴;當時,①當時,,∴無零點;②當時,,∴有1個零點;③當時,,又當時,單調遞增,,∴有2個零點;綜上所述:當時,無零點;當時,有1個零點;當時,有2個零點【點睛】結論點睛:(1)考查導數的幾何意義,往往與解析幾何、微積分相聯系.(2)利用導數求函數的單調區間,判斷單調性;已知單調性,求參數.(3)利用導數求函數的最值(極值),解決生活中的優化問題.(4)考查數形結合思想的應用22、(1);(2)【解析】(1)先求出導函數,再根據x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八步附近美容店活動方案
- 公交公司黨建活動方案
- 不可數名詞的用法與特點:初一英語核心知識點梳理
- 運輸車隊合作協議合同
- 公益捐贈合作協議
- 公會獎勵活動方案
- 公共交通管理活動方案
- 公務員書法培訓活動方案
- 公司diy手作活動方案
- 面粉購銷合同協議書
- 2024年攀枝花市仁和區向招考社區工作者真題
- BIM在公路工程中的三維可視化應用-洞察闡釋
- 離散數學考試題及答案
- 安徽省安慶望江縣聯考2025年七年級英語第二學期期中質量檢測模擬試題含答案
- 2024-2025學年人教版數學一年級下學期期末模擬試卷(含答案)
- 安徽省合肥一中2025屆高三最后一卷英語試題及答案
- 有關工廠實習心得體會模版
- 2025年江蘇省蘇州吳中、吳江、相城區初三英語一模試題及答案
- 2025年組織行為學專業考試試題及答案
- 智能化汽車中的專利戰略布局-洞察闡釋
- 不寐的中醫護理常規
評論
0/150
提交評論