




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省黃岡市晉梅中學高三第一次教學質量檢測試題數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若則實數的取值范圍是()A. B. C. D.2.某網店2019年全年的月收支數據如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數與眾數均為30 D.這一年的總利潤超過400萬元3.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.4.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.45.若的二項展開式中的系數是40,則正整數的值為()A.4 B.5 C.6 D.76.已知雙曲線的左、右頂點分別是,雙曲線的右焦點為,點在過且垂直于軸的直線上,當的外接圓面積達到最小時,點恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.7.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.8.已知集合,集合,若,則()A. B. C. D.9.已知集合,集合,則()A. B. C. D.10.設雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.11.函數(或)的圖象大致是()A. B. C. D.12.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若的展開式中所有項的系數之和為,則______,含項的系數是______(用數字作答).14.已知數列是各項均為正數的等比數列,若,則的最小值為________.15.二項式的展開式的各項系數之和為_____,含項的系數為_____.16.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.18.(12分)已知函數,.(1)求函數在處的切線方程;(2)當時,證明:對任意恒成立.19.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數,滿分100分)進行統計,請根據頻率分布表中所提供的數據,解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0020.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.21.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.22.(10分)設函數,.(1)求函數的極值;(2)對任意,都有,求實數a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,2、D【解析】
直接根據折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數為30,中位數為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應用能力.3、B【解析】
求得直線的方程,聯立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.4、D【解析】
如圖所示:過點作垂直準線于,交軸于,則,設,,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準線于,交軸于,則,設,,則,當,即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉化能力.5、B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題6、A【解析】
點的坐標為,,展開利用均值不等式得到最值,將點代入雙曲線計算得到答案.【詳解】不妨設點的坐標為,由于為定值,由正弦定理可知當取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因為,,所以,當且僅當,即當時,等號成立,此時最大,此時的外接圓面積取最小值,點的坐標為,代入可得,.所以雙曲線的方程為.故選:【點睛】本題考查了求雙曲線方程,意在考查學生的計算能力和應用能力.7、B【解析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.8、A【解析】
根據或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.9、D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區間的定義,對數函數的單調性,以及并集的運算.10、A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于中檔題.11、A【解析】
確定函數的奇偶性,排除兩個選項,再求時的函數值,再排除一個,得正確選項.【詳解】分析知,函數(或)為偶函數,所以圖象關于軸對稱,排除B,C,當時,,排除D,故選:A.【點睛】本題考查由函數解析式選擇函數圖象,解題時可通過研究函數的性質,如奇偶性、單調性、對稱性等,研究特殊的函數的值、函數值的正負,以及函數值的變化趨勢,排除錯誤選項,得正確結論.12、B【解析】
求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.【點睛】本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】的展開式中所有項的系數之和為,,,項的系數是,故答案為(1),(2).14、40【解析】
設等比數列的公比為,根據,可得,因為,根據均值不等式,即可求得答案.【詳解】設等比數列的公比為,,,等比數列的各項為正數,,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數列值的最值問題,解題關鍵是掌握等比數列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.15、【解析】
將代入二項式可得展開式各項系數之和,寫出二項展開式通項,令的指數為,求出參數的值,代入通項即可得出項的系數.【詳解】將代入二項式可得展開式各項系數和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數為.故答案為:;.【點睛】本題考查了二項式定理及二項式展開式通項公式,屬基礎題.16、【解析】在圓上其他位置任取一點B,設圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2,;(2)證明見解析.【解析】
(1)由題意得的方程為,根據為拋物線過焦點的弦,以為直徑的圓與相切于點..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設,的方程為,代入的方程,得,根據直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設,的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,,故.【點睛】本題主要考查拋物線的定義幾何性質以及直線與拋物線的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.18、(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設,,當時,,即可求得答案.【詳解】(1),,,函數在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設,,當時,,,令,解得,當時,,函數在上單調遞減;當時,,函數在上單調遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關鍵是掌握由導數求切線方程的解法和根據導數求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.19、(1),,,;(2)【解析】
(1)根據第1組的頻數和頻率求出,根據頻數、頻率、的關系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數,由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.【點睛】本題考查補全頻率分布表、古典概型的概率,屬于基礎題.20、(1)證明見解析.(2)【解析】
(1)連接AC1,BC1,結合中位線定理可證MN∥BC1,再結合線面垂直的判定定理和線面垂直的性質分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設C1到平面B1CM的距離為h,則有,結合幾何關系即可求解【詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥平面BB1C1C,BC?平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四邊形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC?平面ACB1,CB1?平面ACB1,∴MN⊥平面ACB1,(2)作交于點,設C1到平面B1CM的距離為h,因為MP,所以?MP,因為CM,B1C;B1M,所以所以:CM?B1M.因為,所以,解得所以點,到平面的距離為【點睛】本題主要考查面面垂直的證明以及點到平面的距離,一般證明面面垂直都用線面垂直轉化為面面垂直,而點到面的距離常用體積轉化來求,屬于中檔題21、(1);(2)【解析】
試題分析:(1)根據余弦定理求出B,帶入條件求出,利用同角三角函數關系求其余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲企業品牌授權及合作推廣合同
- 公共交通樞紐停車場車位使用權轉讓合同
- 餐飲公司廚師崗位晉升與勞動合同
- 拆除工程安全生產責任保險合同
- 《有效教學》課件
- 醫學常見病癥診斷與處理知識測試試卷
- 《初二數學概率統計初步學習教案》
- 小學周長教學課件
- 企業廢物管理與環境保護法律法規的執行效果評估考核試卷
- 交通安全宣傳教育政策研究考核試卷
- 2025珠海市輔警考試試卷真題
- QGDW11337-2023輸變電工程工程量清單計價規范
- 境外投資項目的財務評估方法
- 2025屆高考英語二輪復習備考策略課件
- 招標控制價論文開題報告
- 公司主數據管理細則
- 2025年廣東韶關城投集團下屬韶關市第一建筑工程有限公司招聘筆試參考題庫附帶答案詳解
- 2026年1月1日起施行新增值稅法全文課件
- 配電室巡檢培訓
- 輸電線路施工培訓
- 《電子料基礎知識》課件
評論
0/150
提交評論