




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆青海省湟川中學(xué)高二數(shù)學(xué)第一學(xué)期期末檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.拋物線的焦點(diǎn)是A. B.C. D.2.已知函數(shù)的定義域?yàn)椋鋵?dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.3.世界上最早在理論上計(jì)算出“十二平均律”的是我國(guó)明代杰出的律學(xué)家朱載堉,他當(dāng)時(shí)稱這種律制為“新法密率”十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它前一個(gè)單音的頻率的比都相等,且最后一個(gè)單音是第一個(gè)單音頻率的2倍.已知第十個(gè)單音的頻率,則與第四個(gè)單音的頻率最接近的是()A.880 B.622C.311 D.2204.雙曲線的左右焦點(diǎn)分別是,,直線與雙曲線在第一象限的交點(diǎn)為,在軸上的投影恰好是,則雙曲線的離心率是()A. B.C. D.5.在空間中,“直線與沒有公共點(diǎn)”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件6.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件7.在中,角、、的對(duì)邊分別是、、,若.則的大小為()A. B.C. D.8.已知四面體中,,若該四面體的外接球的球心為,則的面積為()A. B.C. D.9.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3C. D.210.已知雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上.若為鈍角三角形,則的取值范圍是A. B.C. D.11.已知一質(zhì)點(diǎn)的運(yùn)動(dòng)方程為,其中的單位為米,的單位為秒,則第1秒末的瞬時(shí)速度為()A. B.C. D.12.設(shè)數(shù)列的前項(xiàng)和為,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.棱長(zhǎng)為的正方體的頂點(diǎn)到截面的距離等于__________.14.雙曲線的右焦點(diǎn)到C的漸近線的距離為,則C漸近線方程為______15.已知函數(shù),則________16.有一道樓梯共10階,小王同學(xué)要登上這道樓梯,登樓梯時(shí)每步隨機(jī)選擇一步一階或一步兩階,小王同學(xué)7步登完樓梯的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數(shù).(1)若時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.(2)解關(guān)于的不等式(其中).18.(12分)已知直線恒過拋物線的焦點(diǎn)F(1)求拋物線的方程;(2)若直線與拋物線交于A,B兩點(diǎn),且,求直線的方程19.(12分)已知等差數(shù)列滿足,,的前項(xiàng)和為.(1)求及;(2)令,求數(shù)列的前項(xiàng)和.20.(12分)已知雙曲線與有相同的漸近線,且經(jīng)過點(diǎn).(1)求雙曲線的方程;(2)已知直線與雙曲線交于不同的兩點(diǎn),且線段的中點(diǎn)在圓上,求實(shí)數(shù)的值.21.(12分)已知數(shù)列的前項(xiàng)的和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù)其中.(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),,滿足,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先判斷焦點(diǎn)的位置,再?gòu)臉?biāo)準(zhǔn)型中找出即得焦點(diǎn)坐標(biāo).【詳解】焦點(diǎn)在軸上,又,故焦點(diǎn)坐標(biāo)為,故選D.【點(diǎn)睛】求圓錐曲線的焦點(diǎn)坐標(biāo),首先要把圓錐曲線的方程整理為標(biāo)準(zhǔn)方程,從而得到焦點(diǎn)的位置和焦點(diǎn)的坐標(biāo).2、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B3、C【解析】依題意,每一個(gè)單音的頻率構(gòu)成一個(gè)等比數(shù)列,由,算出公比,結(jié)合,即可求出.【詳解】設(shè)第一個(gè)單音的頻率為,則最后一個(gè)單音的頻率為,由題意知,且每一個(gè)單音的頻率構(gòu)成一個(gè)等比數(shù)列,設(shè)公比為,則,解得:又,則與第四個(gè)單音的頻率最接近的是311,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查等比數(shù)列通項(xiàng)公式的運(yùn)算,解題的關(guān)鍵是分析題意將其轉(zhuǎn)化為等比數(shù)列的知識(shí),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.4、D【解析】根據(jù)題意的到,,代入到雙曲線方程,解得,即,則,即,即,求解方程即可得到結(jié)果.【詳解】設(shè)原點(diǎn)為,∵直線與雙曲線在第一象限的交點(diǎn)在軸上的投影恰好是,∴,且,∴,將代入到雙曲線方程,可得,解得,即,則,即,即,解得(舍負(fù)),故.故選:D.5、A【解析】由于在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【詳解】在空間中,若直線與沒有公共點(diǎn),則直線與平行或異面.故“直線與沒有公共點(diǎn)”是“直線與異面”的必要不充分條件.故選:A.6、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B7、B【解析】利用余弦定理結(jié)合角的范圍可求得角的值,再利用三角形的內(nèi)角和定理可求得的值.【詳解】因?yàn)椋瑒t,則,由余弦定理可得,因?yàn)椋瑒t,故.故選:B.8、C【解析】根據(jù)四面體的性質(zhì),結(jié)合線面垂直的判定定理、球的性質(zhì)、正弦定理進(jìn)行求解即可.【詳解】由圖設(shè)點(diǎn)為中點(diǎn),連接,由,所以,面,則面,且,所以球心面,所以平面與球面的截面為大圓,延長(zhǎng)線與此大圓交于點(diǎn).在三角形中,由,所以,由正弦定理知:三角形的外接圓半徑為,設(shè)三角形的外接圓圓心為點(diǎn),則面,有,則,設(shè)的外接圓圓心為點(diǎn),則面,由正弦定理知:三角形PAB的外接圓半徑為,所以,又三角形中,,所以為的角平分線,則,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中點(diǎn),由,所以,故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用正弦定理、勾股定理、線面垂直的判定定理是解題的關(guān)鍵.9、D【解析】根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過作,垂足為,設(shè)與軸交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.10、C【解析】根據(jù)雙曲線的幾何性質(zhì),結(jié)合余弦定理分別討論當(dāng)為鈍角時(shí)的取值范圍,根據(jù)雙曲線的對(duì)稱性,可以只考慮點(diǎn)在雙曲線上第一象限部分即可.【詳解】由題:雙曲線:的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線上,必有,若為鈍角三角形,根據(jù)雙曲線的對(duì)稱性不妨考慮點(diǎn)在雙曲線第一象限部分:當(dāng)為鈍角時(shí),在中,設(shè),有,,即,,所以;當(dāng)時(shí),所在直線方程,所以,,,根據(jù)圖象可得要使,點(diǎn)向右上方移動(dòng),此時(shí),綜上所述:的取值范圍是.故選:C【點(diǎn)睛】此題考查雙曲線中焦點(diǎn)三角形相關(guān)計(jì)算,關(guān)鍵在于根據(jù)幾何意義結(jié)合特殊情況分類討論,體現(xiàn)數(shù)形結(jié)合思想.11、C【解析】求出即得解.【詳解】解:由題意得,故質(zhì)點(diǎn)在第1秒末的瞬時(shí)速度為.故選:C12、C【解析】利用,把代入中,即可求出答案.【詳解】當(dāng)時(shí),.當(dāng)時(shí),.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)勾股定理可以計(jì)算出,這樣得到是直角三角形,利用等體積法求出點(diǎn)到的距離.【詳解】解:如圖所示,在三棱錐中,是三棱錐的高,,在中,,,,所以是直角三角形,,設(shè)點(diǎn)到的距離為,.故A到平面的距離為故答案為:【點(diǎn)睛】本題考查了點(diǎn)到線的距離,利用等體積法求出點(diǎn)到面的距離.是解題的關(guān)鍵.14、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點(diǎn)到直線的距離公式計(jì)算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:15、.【解析】將代入計(jì)算,利用和互為相反數(shù),作差可得,計(jì)算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時(shí)成立.故答案為:.16、【解析】由題意可分為步、步、步、步、步、步共6種情況,分別求出每種的基本事件數(shù),再利用古典概型的概率公式計(jì)算可得;【詳解】解:由題意可分為步、步、步、步、步、步共6種情況,①步:即步兩階,有種;②步:即步兩階與步一階,有種;③步:即步兩階與步一階,有種;④步:即步兩階與步一階,有種;⑤步:即步兩階與步一階,有種;⑥步:即步一階,有種;綜上可得一共有種情況,滿足7步登完樓梯的有種;故7步登完樓梯的概率為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)答案見解析.【解析】(1)結(jié)合分離常數(shù)法、基本不等式求得的取值范圍.(2)將原不等式轉(zhuǎn)化為,對(duì)進(jìn)行分類討論,由此求得不等式的解集.【詳解】(1)不等式即為:,當(dāng)時(shí),可變形為:,即.又,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,,即.實(shí)數(shù)的取值范圍是:.(2)不等式,即,等價(jià)于,即,①當(dāng)時(shí),不等式整理為,解得:;當(dāng)時(shí),方程的兩根為:,.②當(dāng)時(shí),可得,解不等式得:或;③當(dāng)時(shí),因?yàn)椋獠坏仁降茫海虎墚?dāng)時(shí),因?yàn)椋坏仁降慕饧癁椋虎莓?dāng)時(shí),因?yàn)椋獠坏仁降茫海痪C上所述,不等式的解集為:①當(dāng)時(shí),不等式解集為;②當(dāng)時(shí),不等式解集為;③當(dāng)時(shí),不等式解集為;④當(dāng)時(shí),不等式解集為;⑤當(dāng)時(shí),不等式解集為.18、(1)(2)或【解析】(1)把直線化為,得到拋物線的焦點(diǎn)為,求得,即可求得拋物線的方程;(2)聯(lián)立方程組,得到,,結(jié)合,列出方程求得的值,即可求得直線的方程【小問1詳解】解:將直線化為,可得直線恒過點(diǎn),即拋物線的焦點(diǎn)為,所以,解得,所以拋物線的方程為【小問2詳解】解:由題意顯然,聯(lián)立方程組,整理得,設(shè),,則,,因?yàn)椋裕獾茫曰颍灾本€的方程為或19、(1),;(2).【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式及已知條件,,解方程組可得,,進(jìn)而可得等差數(shù)列的通項(xiàng)公式,再利用等差數(shù)列的前項(xiàng)和公式可得;(2)將數(shù)列的通項(xiàng)公式代入可得的通項(xiàng)公式,利用錯(cuò)位相減法求和可得結(jié)果.【詳解】(1)設(shè)等差數(shù)列的首項(xiàng)為,公差為,由于,,所以,,解得,,所以,;(2)因?yàn)椋裕剩瑑墒较鄿p得,所以.【點(diǎn)睛】本題的核心是考查錯(cuò)位相減求和.一般地,如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an·bn}的前n項(xiàng)和時(shí),可采用錯(cuò)位相減法求和,一般是和式兩邊同乘以等比數(shù)列{bn}的公比,然后作差求解.20、(1)(2)【解析】(1)根據(jù)所求雙曲線與有共同的漸近線可設(shè)出所求雙曲線方程為,在根據(jù)點(diǎn)在雙曲線上,代入雙曲線方程中即可求解.(2)聯(lián)立直線與雙曲線的方程,得關(guān)于的一元二次方程,利用韋達(dá)定理得出的關(guān)系,再根據(jù)中點(diǎn)坐標(biāo)公式求出線段的中點(diǎn)的坐標(biāo),代入圓方程即可求解.【小問1詳解】由題意,設(shè)雙曲線的方程為,則又因?yàn)殡p曲線過點(diǎn),,所以雙曲線的方程為:【小問2詳解】由,消去整理,得,設(shè),則因?yàn)橹本€與雙曲線交于不同的兩點(diǎn),所以,解得.,所以則中點(diǎn)坐標(biāo)為,代入圓得,解得.實(shí)數(shù)的值為21、(1);(2).【解析】(1)根據(jù),并結(jié)合等比數(shù)列的定義即可求得答案;(2)結(jié)合(1),并通過錯(cuò)位相減法即可求得答案.【小問1詳解】當(dāng)時(shí),,當(dāng)時(shí),,是以2為首項(xiàng),2為公比的等比數(shù)列,.【小問2詳解】,…①…②①-②得,.22、(1)單調(diào)遞增區(qū)間,無遞減區(qū)間;(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),從而判斷其正負(fù),確定函數(shù)的單調(diào)區(qū)間;(2)根據(jù)題意可得到,進(jìn)而變形為,然后換元令,將證明的問題轉(zhuǎn)換為成立的問題,從而構(gòu)造新函數(shù),求新函數(shù)的導(dǎo)數(shù),判斷其單調(diào)性,求其最值,進(jìn)而證明不等式成立.【小問1詳解】時(shí),,,令,當(dāng)時(shí),,當(dāng)時(shí),,故,則,故是單調(diào)遞增函數(shù),即的單調(diào)遞增區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 刀剪產(chǎn)品的品牌推廣策略與執(zhí)行計(jì)劃考核試卷
- 豬的飼養(yǎng)智能化管理考核試卷
- 竹材加工過程中的質(zhì)量控制考核試卷
- 皮革制品的消費(fèi)心理與購(gòu)買決策考核試卷
- 盾構(gòu)機(jī)施工中的隧道工程地質(zhì)環(huán)境保護(hù)策略考核試卷
- 廈門醫(yī)學(xué)院《心理測(cè)量學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 無錫科技職業(yè)學(xué)院《人體工程學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 西昌民族幼兒師范高等專科學(xué)校《腦癱兒童功能評(píng)估》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)化工大學(xué)《語文》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽(yáng)職業(yè)技術(shù)學(xué)院《外國(guó)文學(xué)作品欣賞》2023-2024學(xué)年第二學(xué)期期末試卷
- 藥劑科終止妊娠藥品管理制度
- 除草劑分類和使用方法
- 合同制消防員績(jī)效考核細(xì)則詳解
- 中遠(yuǎn)集團(tuán)養(yǎng)老保險(xiǎn)工作管理程序
- 留守兒童幫扶記錄表
- 門禁一卡通系統(tǒng)解決方案
- 變電站第二種工作票
- 煤礦機(jī)電運(yùn)輸專業(yè)質(zhì)量標(biāo)準(zhǔn)化管理制度
- 機(jī)電一體化專業(yè)畢業(yè)論文43973
- 基于PLC的變頻中央空調(diào)溫度控制系統(tǒng)的畢業(yè)設(shè)計(jì)
- 第三部分110kv模塊第34章1b1y1
評(píng)論
0/150
提交評(píng)論