




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省吉安市2025屆數學高二上期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知F(3,0)是橢圓的一個焦點,過F且垂直x軸的弦長為,則該橢圓的方程為()A.+=1 B.+=1C.+=1 D.+=12.如圖,平行六面體中,與的交點為,設,則選項中與向量相等的是()A. B.C. D.3.1202年,意大利數學家斐波那契出版了他的《算盤全書》.他在書中收錄了一些有意思的問題,其中有一個關于兔子繁殖的問題:如果1對兔子每月生1對小兔子(一雌一雄),而每1對小兔子出生后的第3個月里,又能生1對小兔子,假定在不發生死亡的情況下,如果用Fn表示第n個月的兔子的總對數,則有(n>2),.設數列{an}滿足:an=,則數列{an}的前36項和為()A.11 B.12C.13 D.184.與直線平行,且經過點(2,3)的直線的方程為()A. B.C. D.5.下列各式正確的是()A. B.C. D.6.為了了解1200名學生對學校某項教改實驗的意見,打算從中抽取一個容量為40的樣本,采用系統抽樣方法,則分段的間隔為()A.40 B.30C.20 D.127.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數為()A.0 B.1C.2 D.38.若直線與圓相切,則()A. B.或2C. D.或9.設AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F1為橢圓的左焦點,則的值是()A. B.C. D.10.我國古代數學典籍《四元玉鑒》中有如下一段話:“河有汛,預差夫一千八百八十人筑堤,只云初日差六十五人,次日轉多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人11.已知,,若,則xy的最小值是()A. B.C. D.12.己知F為拋物線的焦點,過F作兩條互相垂直的直線,,直線與C交于A、B兩點,直線與C交于D、E兩點,則的最小值為()A.24 B.22C.20 D.16二、填空題:本題共4小題,每小題5分,共20分。13.若直線與圓有公共點,則b的取值范圍是_____14.在數列中,,,則數列中最大項的數值為__________15.函數的導數_________________.16.一個六棱錐的體積為,其底面是邊長為的正六邊形,側棱長都相等,則該六棱錐的側面積為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,且離心率.(1)求橢圓C的標準方程;(2)若動點在橢圓上,且在第一象限內,點分別為橢圓的左、右頂點,直線分別與橢圓C交于點,過作直線的平行線與橢圓交于點,問直線是否過定點,若經過定點,求出該定點的坐標;若不經過定點,請說明理由.18.(12分)如圖所示等腰梯形ABCD中,,,,點E為CD的中點,沿AE將折起,使得點D到達F位置.(1)當時,求證:平面AFC;(2)當時,求二面角的余弦值.19.(12分)已知:在四棱錐中,底面為正方形,側棱平面,點為中點,.(1)求證:平面平面;(2)求直線與平面所成角大小;(3)求點到平面的距離.20.(12分)已知等差數列滿足,.(1)求的通項公式;(2)設,求數列的前項和.21.(12分)已知,,且,求實數的取值范圍.22.(10分)求下列函數的導數:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據已知條件求得,由此求得橢圓的方程.【詳解】依題意,所以橢圓方程為.故選:C2、B【解析】利用空間向量加減法、數乘的幾何意義,結合幾何體有,進而可知與向量相等的表達式.【詳解】連接,如下圖示:,.故選:B3、B【解析】由奇數+奇數=偶數,奇數+偶數=奇數可知,數列{Fn}中F3,F6,F9,F12,,F3n為偶數,其余項都為奇數,再根據an=,即可求出數列{an}的前36項和【詳解】由奇數+奇數=偶數,奇數+偶數=奇數可知,數列{Fn}中F3,F6,F9,F12,,F3n為偶數,其余項都為奇數,∴前36項共有12項為偶數,∴數列{an}的前36項和為12×1+24×0=12.故選:B4、C【解析】由直線平行及直線所過的點,應用點斜式寫出直線方程即可.【詳解】與直線平行,且經過點(2,3)的直線的方程為,整理得故選:C5、C【解析】利用導數的四則運算即可求解.【詳解】對于A,,故A錯誤;對于B,,故B錯誤;對于C,,故C正確;對于D,,故D錯誤;故選:C6、B【解析】根據系統抽樣的概念,以及抽樣距的求法,可得結果.【詳解】由總數為1200,樣本容量為40,所以抽樣距為:故選:B【點睛】本題考查系統抽樣的概念,屬基礎題.7、A【解析】先假設存在這樣的直線,分斜率存在和斜率不存在設出直線的方程,當斜率k存在時,與雙曲線方程聯立,消去,得到關于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設過點的直線方程為或,①當斜率存在時有,得(*)當直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標,又為線段的中點,,即,,使但使,因此當時,方程①無實數解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當時,經過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A8、D【解析】根據圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.9、D【解析】根據橢圓的定義,寫出,可求出的和,又根據關于縱軸成對稱分布,得到結果詳解】設橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關于軸成對稱分布,又,故所求的值為故選:D10、B【解析】根據題意,設每天派出的人數組成數列,可得數列是首項,公差數7的等差數列,解方程可得所求值【詳解】解:設第天派出的人數為,則是以65為首項、7為公差的等差數列,且,,∴,,∴天則目前派出的人數為人,故選:B11、C【解析】對使用基本不等式,這樣得到關于的不等式,解出xy的最小值【詳解】因為,,由基本不等式得:,所以,解得:,當且僅當,即,時,等號成立故選:C12、A【解析】由拋物線的性質:過焦點的弦長公式計算可得.【詳解】設直線,的斜率分別為,由拋物線的性質可得,,所以,又因為,所以,所以,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數取值范圍是.故答案為:14、【解析】用累加法求出通項,再由通項表達式確定最大項.【詳解】當時,,所以數列中最大項的數值為故答案為:15、.【解析】根據初等函數的導數法則和導數的四則運算法則,準確運算,即可求解.【詳解】由題意,函數,可得.故答案為:.16、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側棱長都相等,∴棱錐是正六棱錐,設棱錐的高為h,則棱錐斜高為該六棱錐的側面積為考點:棱柱、棱錐、棱臺的體積三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)過定點,【解析】(1)根據橢圓上的點及離心率求出a,b即可;(2)設點,設直線的方程為,聯立方程,得到根與系數的關系,利用條件化簡,結合橢圓方程,求出即可得解.【小問1詳解】由,有,又,所以,橢圓C的標準方程為.【小問2詳解】設點,設直線的方程為.如圖,聯立,消有:,韋達定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直線不過右端點,所以,則,所以直線過定點.18、(1)證明見解析(2)【解析】(1)結合線面垂直的判定定理來證得結論成立.(2)建立空間直角坐標系,利用向量法來求得二面角的大小.【小問1詳解】設,由于四邊形是等腰梯形,是的中點,,所以,所以四邊形是平行四邊形,由于,所以四邊形是菱形,所以,由于,是的中點,所以,由于,所以平面.【小問2詳解】由于,所以三角形、三角形、三角形是等邊三角形,設是的中點,設,則,所以,所以,由于兩兩垂直.以為空間坐標原點建立如圖所示空間直角坐標系,,,平面的法向量為,設平面法向量為,則,故可設,由圖可知,二面角為鈍角,設二面角為,,則.19、(1)證明見解析;(2);(3).【解析】(1)以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標系,求出平面PCD的法向量為,平面的法向量為,即得證;(2)設直線與平面所成角為,利用向量法求解;(3)利用向量法求點到平面的距離.【小問1詳解】證明:PA平面ABCD,ABCD為正方形,以AB所在的直線為x軸,以AD所在的直線為y軸,以AP所在的直線為z軸,建立如圖所示的直角坐標系.由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1)M為PD的中點,,所以,,,所以,又PDAM,,平面PCDAM平面PCD.平面PCD的法向量為.設平面的法向量為,,令,則,..平面MAC平面PCD.【小問2詳解】解:設直線與平面所成角為,由(1)可得:平面PCD的法向量為,,,即直線與平面所成角大小.【小問3詳解】解:,設點到平面的距離為,.點到平面的距離為.20、(1);(2).【解析】(1)設等差數列的公差為,根據題意可得出關于、的方程組,解出這兩個量的值,可得出數列的通項公式;(2)求得,利用裂項法可求得.【小問1詳解】解:設等差數列的公差為,則,可得,由可得,即,解得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軍事理論課程考試試卷及答案解析
- 2025年科學研究方法論考試試卷及答案
- 2025年口腔醫學專業研究生入學考試試卷及答案
- 2025年歷史學科知識水平考試試題及答案
- 和公司包工合同協議
- 民事交通調解協議書模板
- 武漢口譯服務合同協議
- 品牌傳媒公司合同協議
- 商業用氣合同協議
- 比亞德購車合同協議
- 網絡教育能VS不能取代傳統教育形式辯論賽-反方辯詞一辯、二辯、三辯、四辯發言稿
- 軟件工程實驗報告 概要設計
- 心衰評估量表
- 應用翻譯-華東交通大學中國大學mooc課后章節答案期末考試題庫2023年
- 大學生性健康教育智慧樹知到答案章節測試2023年南昌大學
- 2、圓口綱完整版課件
- JB/T 20173-2016輥壓干法制粒機
- 外科護理學題庫(中專)
- DB2110T 0004-2020 遼陽地區主要樹種一元、二元立木材積表
- 建設工程施工項目每日“防高墜三檢”檢查記錄表
- 住建部《建筑業10項新技術(2017版)》解讀培訓課件
評論
0/150
提交評論