湖北省荊州市松滋第四中學2025屆數學高二上期末復習檢測試題含解析_第1頁
湖北省荊州市松滋第四中學2025屆數學高二上期末復習檢測試題含解析_第2頁
湖北省荊州市松滋第四中學2025屆數學高二上期末復習檢測試題含解析_第3頁
湖北省荊州市松滋第四中學2025屆數學高二上期末復習檢測試題含解析_第4頁
湖北省荊州市松滋第四中學2025屆數學高二上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省荊州市松滋第四中學2025屆數學高二上期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《鏡花緣》是清代文人李汝珍創作的長篇小說,書中有這樣一個情節:一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.2.根據如下樣本數據,得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.3.當時,不等式恒成立,則實數的取值范圍為()A. B.C. D.4.某學生2021年共參加10次數學競賽模擬考試,成績分別記為,,,…,,為研究該生成績的起伏變化程度,選用一下哪個數字特征最為合適()A.,,,…,的平均值; B.,,,…,的標準差;C.,,,…,的中位數; D.,,,…,的眾數;5.如圖,在平行六面體中,設,,,用基底表示向量,則()A. B.C. D.6.設AB是橢圓()的長軸,若把AB一百等分,過每個分點作AB的垂線,交橢圓的上半部分于P1、P2、…、P99,F1為橢圓的左焦點,則的值是()A. B.C. D.7.在三棱錐中,,,則異面直線PC與AB所成角的余弦值是()A. B.C. D.8.某機構通過抽樣調查,利用列聯表和統計量研究患肺病是否與吸煙有關,計算得,經查對臨界值表知,,現給出四個結論,其中正確的是()A.因為,故有90%的把握認為“患肺病與吸煙有關"B.因為,故有95%把握認為“患肺病與吸煙有關”C.因為,故有90%的把握認為“患肺病與吸煙無關”D.因為,故有95%的把握認為“患肺病與吸煙無關”9.若函數在區間內存在單調遞增區間,則實數的取值范圍是()A. B.C. D.10.已知數列滿足,若.則的值是()A. B.C. D.11.等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,且則的實軸長為A.1 B.2C.4 D.812.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=1二、填空題:本題共4小題,每小題5分,共20分。13.i為虛數單位,復數______14.函數單調增區間為______.15.直線的一個法向量________.16.已知數列的前n項和為,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數列的前n項和為,,(1)求數列的通項公式;(2)在與之間插入n個數,使這個數組成一個等差數列,記插入的這n個數之和為,求數列的前n項和18.(12分)在平面直角坐標系中,已知直線(t為參數).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的直角坐標為,直線與曲線的交點為,求的值.19.(12分)已知數列的前項和為,若.(1)求的通項公式;(2)設,求數列的前項和.20.(12分)已知函數(1)討論函數的單調性;(2)若函數有兩個零點,,證明:21.(12分)已知拋物線的頂點是坐標原點,焦點在軸上,且拋物線上的點到焦點的距離是5.(1)求該拋物線的標準方程和的值;(2)若過點的直線與該拋物線交于,兩點,求證:為定值.22.(10分)已知函數(1)求在點處的切線方程(2)求直線與曲線圍成的封閉圖形的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意求得,再由古典概型及其概率的公式,即可求解【詳解】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意可得,解得,則燈球的總數為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據題意列出方程組,求得兩種燈球的數量是解答的關鍵,著重考查了運算與求解能力,屬于基礎題2、B【解析】作出散點圖,由散點圖得出回歸直線中的的符號【詳解】作出散點圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當x=0時,=>0.故選B【點睛】本題考查了散點圖的概念,擬合線性回歸直線第一步畫散點圖,再由數據計算的值3、A【解析】設,對實數的取值進行分類討論,求得,解不等式,綜合可得出實數的取值范圍.【詳解】設,其中.①當時,即當時,函數在區間上單調遞增,則,解得,此時不存在;②當時,,解得;③當時,即當時,函數在區間上單調遞減,則,解得,此時不存在.綜上所述,實數的取值范圍是.故選:A.4、B【解析】根據平均數、標準差、中位數及眾數的概念即得.【詳解】根據平均數、中位數、眾數的概念可知,平均數、中位數、眾數描述數據的集中趨勢,標準差描述數據的波動大小估計數據的穩定程度.故選:B.5、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B6、D【解析】根據橢圓的定義,寫出,可求出的和,又根據關于縱軸成對稱分布,得到結果詳解】設橢圓右焦點為F2,由橢圓的定義知,2,,,由題意知,,,關于軸成對稱分布,又,故所求的值為故選:D7、A【解析】分別取、、的中點、、,連接、、、、,由題意結合平面幾何的知識可得、、或其補角即為異面直線PC與AB所成角,再由余弦定理即可得解.【詳解】分別取、、的中點、、,連接、、、、,如圖:由可得,所以,在,,可得由中位線的性質可得且,且,所以或其補角即為異面直線PC與AB所成角,在中,,所以異面直線AB與PC所成角的余弦值為.故選:A.【點睛】思路點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認定:證明作出的角就是所求異面直線所成的角;(3)計算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當所作的角為鈍角時,應取它的補角作為兩條異面直線所成的角8、A【解析】根據給定條件利用獨立性檢驗的知識直接判斷作答.【詳解】因,且,由臨界值表知,,,所以有90%的把握認為“患肺病與吸煙有關”,則A正確,C不正確;.因臨界值3.841>3.305,則不能確定有95%的把握認為“患肺病與吸煙有關”,也不能確定有95%的把握認為“患肺病與吸煙無關”,即B,D都不正確.故選:A9、D【解析】求出函數的導數,問題轉化為在有解,進而求函數的最值,即可求出的范圍.【詳解】∵,∴,若在區間內存在單調遞增區間,則有解,故,令,則在單調遞增,,故.故選:D.10、D【解析】由,轉化為,再由求解.【詳解】因為數列滿足,所以,即,因為,所以,所以,故選:D11、B【解析】設等軸雙曲線的方程為拋物線,拋物線準線方程為設等軸雙曲線與拋物線的準線的兩個交點,,則,將,代入,得等軸雙曲線的方程為的實軸長為故選12、D【解析】根據雙曲線的性質求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡求解即可.【詳解】故答案為:.14、【解析】利用導數法求解.【詳解】因為函數,所以,當時,,所以的單調增區間是,故答案為:15、(答案不唯一)【解析】根據給定直線方程求出其方向向量,再由法向量意義求解作答.【詳解】直線的方向向量為,而,所以直線的一個法向量.故答案為:16、【解析】先通過裂項相消求出,再代入計算即可.【詳解】,則,故.故答案為:3.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)設等比數列公比為q,利用與關系可求q,在中令n=1可求;(2)根據等差數列前n項和公式可求,分析{}的通項公式,利用錯位相減法求其前n項和.【小問1詳解】設等比數列的公比為q,由己知,可得,兩式相減可得,即,整理得,可知,已知,令,得,即,解得,故等比數列的通項公式為;【小問2詳解】由題意知在與之間插入n個數,這個數組成以為首項的等差數列,∴,設{}前n項和為,①①×3:②①-②:18、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標公式得曲線的直角坐標方程.(2)將代入曲線C的直角坐標方程得,再利用直線參數方程t的幾何意義和韋達定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標方程為②(2)將代入②式,得,點M的直角坐標為(0,3),設這個方程的兩個實數根分別為t1,t2,則∴t1<0,t2<0則由參數t的幾何意義即得.【點睛】本題主要考查極坐標和直角坐標的互化、直線參數方程t的幾何意義,屬于基礎題.19、(1)(2)【解析】(1)根據所給條件先求出首項,然后仿寫,作差即可得到的通項公式;(2)根據(1)求出的通項公式,觀察是由一個等差數列加上一個等比數列得到,要求其前項和,采用分組求和法結合公式法可求出前項和【小問1詳解】當時,,解得;當時,,∴,化簡得,∴是首項為1,公比為2的等比數列,∴,因此的通項公式為.【小問2詳解】由(1)得,∴,∴,∴20、(1)函數的單調性見解析;(2)證明見解析.【解析】(1)求出函數的導數,按a值分類討論判斷的正負作答.(2)將分別代入計算化簡變形,再對所證不等式作等價變形,構造函數,借助函數導數推理作答.【小問1詳解】已知函數的定義域為,,當時,恒成立,所以在區間上單調遞增;當時,由,解得,由,解得,的單調遞增區間為,單調遞減區間為,所以,當時,在上單調遞增,當時,在上單調遞增,在上單調遞減.【小問2詳解】依題意,不妨設,則,,于是得,即,亦有,即,因此,,要證明,即證,即證,即證,即證,令,,,則有在上單調遞增,,,即成立,所以.【點睛】思路點睛:涉及雙變量的不等式證明問題,將所證不等式等價轉化,構造新函數,再借助導數探討函數的單調性、極(最)值問題處理.21、(1),(2)證明見解析【解析】(1)根據點到焦點的距離等于5,利用拋物線的定義求得p,進而得到拋物線方程,然后將點代入拋物線求解;(2)方法一:設直線方程為:,與拋物線方程聯立,結合韋達定理,利用數量積的運算求解;方法二:根據直線過點,分直線的斜率不存在時,檢驗即可;當直線的斜率存在時,設直線方程為:,與拋物線方程聯立,結合韋達定理,利用向量的數量積運算求解.【小問1詳解】解:∵拋物線焦點在軸上,且過點,∴設拋物線方程為,由拋物線定義知,點到焦點的距離等于5,即點到準線的距離等于5,則,,∴拋物線方程為,又點在拋物線上,,,∴所求拋物線方程為,.【小問2詳解】方法一:由于直線過點,可設直線方程為:,由得,設,,則,,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論