




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆新疆喀什第二中學高二上數學期末監測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與圓相交與A,B兩點,則AB的長等于()A3 B.4C.6 D.12.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數a的取值范圍是()A. B.C. D.3.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.4.如圖甲是第七屆國際數學家大會(簡稱ICME—7)的會徽圖案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點,設這些直角三角形的周長從小到大組成的數列為,令,為數列的前項和,則()A.8 B.9C.10 D.115.丹麥數學家琴生(Jensen)是19世紀對數學分析作出卓越貢獻的巨人,特別是在函數的凸凹性與不等式方面留下了很多寶貴的成果.設函數在區間內的導函數為,在區間內的導函數為,在區間內恒成立,則稱函數在區間內為“凸函數”,則下列函數在其定義域內是“凸函數”的是()A. B.C. D.6.《周髀算經》是中國最古老的天文學和數學著作,書中提到:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節氣的日影子長依次成等差數列.若冬至、大寒、雨水的日影子長的和是尺,芒種的日影子長為尺,則冬至的日影子長為()A.尺 B.尺C.尺 D.尺7.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.8.等比數列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.59.在等差數列中,,則()A.9 B.6C.3 D.110.在等差數列中,若,則()A.6 B.9C.11 D.2411.若直線與直線垂直,則()A6 B.4C. D.12.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,則曲線在點處的切線方程為______14.已知點和,M是橢圓上一動點,則的最大值為________.15.函數的單調遞減區間是____16.已知直線與圓:交于、兩點,則的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓與x軸交于A,B兩點,P是該圓上任意一點,AP,PB的延長線分別交直線于M,N兩點.(1)若弦AP長為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當圓C面積最小時,求此時圓C的方程.18.(12分)設橢圓過,兩點,為坐標原點(1)求橢圓的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓恒有兩個交點,,且?若存在,寫出該圓的方程,并求的取值范圍;若不存在,說明理由19.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積20.(12分)在平面直角坐標系中,已知橢圓過點,且離心率.(1)求橢圓的方程;(2)直線的斜率為,直線l與橢圓交于兩點,求的面積的最大值.21.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標22.(10分)已知等差數列滿足:成等差數列,成等比數列.(1)求的通項公式:(2)在數列的每相鄰兩項與間插入個,使它們和原數列的項構成一個新數列,數列的前項和記為,求及.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據弦長公式即可求出【詳解】因為圓心到直線的距離為,所以AB的長等于故選:C2、D【解析】根據圓的割線定理,結合圓的性質進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D3、A【解析】由同角公式求出,根據三角形面積公式求出,根據余弦定理求出,根據正弦定理求出.【詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【點睛】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎題.4、B【解析】由題意可得的邊長,進而可得周長及,進而可得,可得解.【詳解】由,可得,,,,所以,,所以前項和,所以,故選:B.5、B【解析】根據基本初等函數的導函數公式求各函數二階導函數,判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內有正有負,故不是“凸函數”;B:,則,故是“凸函數”;C:,則,故不是“凸函數”;D:,則,顯然定義域內有正有負,故不是“凸函數”;故選:B6、D【解析】根據題意轉化為等差數列,求首項.【詳解】設冬至的日影長為,雨水的日影長為,根據等差數列的性質可知,芒種的日影長為,,解得:,,所以冬至的日影長為尺.故選:D7、D【解析】由空間向量運算法則得,利用向量的線性運算求出結果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.8、C【解析】由等比數列性質求出公比,將原式化簡后計算【詳解】設等比數列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C9、A【解析】直接由等差中項得到結果.詳解】由得.故選:A.10、B【解析】根據等差數列的通項公式的基本量運算求解【詳解】設的公差為d,因為,所以,又,所以故選:B11、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.12、B【解析】通過判斷直線的方向向量與平面的法向量的關系,可得結論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用導數求出切線的斜率即得解.【詳解】解:由題得,所以切線的斜率為,所以切線的方程為即.故答案為:14、【解析】由題設條件可知,.當M在直線與橢圓交點上時,在第一象限交點時有,在第三象限交點時有.顯然當M在直線與橢圓第三象限交點時有最大值,其最大值.由此能夠求出的最大值.【詳解】解:A為橢圓右焦點,設左焦點為,則由橢圓定義,于是.當M不在直線與橢圓交點上時,M、F、B三點構成三角形,于是,而當M在直線與橢圓交點上時,在第一象限交點時,有,在第三象限交點時有.顯然當M在直線與橢圓第三象限交點時有最大值,其最大值為.故答案為:.【點睛】本題考查橢圓的基本性質,解題時要熟練掌握基本公式.15、【解析】求導,根據可得答案.【詳解】由題意,可得,令,即,解得,即函數的遞減區間為.故答案為:.【點睛】本題考查運用導函數的符號,研究函數的單調性,屬于基礎題.16、2【解析】用已知直線方程和圓方程聯立,可以求出交點,再分析三角形的形狀,即可求出三角形的面積.【詳解】由圓C方程:可得:;即圓心C的坐標為(0,-1),半徑r=2;聯立方程得交點,如下圖:可知軸,∴是以為直角的直角三角形,,故答案為:2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】(1)根據圓的直徑的性質,結合銳角三角函數定義進行求解即可;(2)根據題意,結合基本不等式和圓的標準方程進行求解即可.【小問1詳解】在方程中,令,解得,或,因為AP,PB的延長線分別交直線于M,N兩點,所以,圓心在x軸上,所以,因為,,所以有,當P在x軸上方時,直線PB的斜率為:,所以直線PB的方程為:,當P在x軸下方時,直線PB的斜率為:,所以直線PB的方程為:,因此直線PB的方程為或;【小問2詳解】由(1)知:,,所以設直線的斜率為,因此直線的斜率為,于是直線的方程為:,令,,即直線的方程為:,令,,即,因為同號,所以,當且僅當時取等號,即當時取等號,于是有以線段MN為直徑作圓C,當圓C面積最小時,此時最小,當時,和,中點坐標為:,半徑為,所以圓的方程為:,同理當時,和,中點坐標為:,半徑為,所以圓的方程為:,綜上所述:圓C的方程為.18、(1)(2)存在,,【解析】(1)根據橢圓E:()過,兩點,直接代入方程解方程組,解方程組即可.(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,當切線斜率存在時,設該圓的切線方程為,聯立,根據,結合韋達定理運算,同時滿足,則存在,否則不存在;在該圓的方程存在時,利用弦長公式結合韋達定理得到,結合題意求解即可,當切線斜率不存在時,驗證即可.【小問1詳解】將,的坐標代入橢圓的方程得,解得,所以橢圓的方程為【小問2詳解】假設滿足題意的圓存在,其方程為,其中,設該圓的任意一條切線和橢圓交于,兩點,當直線的斜率存在時,令直線的方程為,①將其代入橢圓的方程并整理得,由韋達定理得,,②因為,所以,③將①代入③并整理得,聯立②得,④因為直線和圓相切,因此,由④得,所以存在圓滿足題意當切線的斜率不存在時,易得,由橢圓方程得,顯然,綜上所述,存在圓滿足題意當切線的斜率存在時,由①②④得,由,得,即當切線的斜率不存在時,易得,所以綜上所述,存在圓心在原點的圓滿足題意,且19、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.20、(1);(2)2.【解析】(1)由離心率,得到,再由點在橢圓上,得到,聯立求得,即可求得橢圓的方程.(2)設的方程為,聯立方程組,根據根系數的關系和弦長公式,以及點到直線的距離公式,求得,結合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過點,可得,將代入,可得,故橢圓方程為.(2)設的方程為,設點,聯立方程組,消去y整理,得,所以,又直線與橢圓相交,所以,解得,則,點P到直線的距離,所以,當且僅當,即時,的面積取得最大值為2.【點睛】本題主要考查橢圓的標準方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯立直線方程與橢圓方程,應用一元二次方程根與系數的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.21、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結合點坐標求AB的垂直平分線,根據已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關系求弦長,由三角形面積求點線距離,設M所在直線為,由點線距離公式列方程求參數,進而聯立直線與圓C求M的坐標【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年山東華興機械集團有限責任公司人員招聘筆試備考題庫含答案詳解
- 2024年濱州新能源集團有限責任公司及權屬公司公開招聘工作人員遞補筆試備考題庫含答案詳解(綜合卷)
- 2023國家能源投資集團有限責任公司第一批社會招聘筆試備考題庫含答案詳解(達標題)
- 2025福建晉園發展集團有限責任公司權屬子公司招聘7人筆試備考題庫及一套答案詳解
- 通信原理簡明教程(第2版)教案全套 黃葆華 第1-8章 緒論-同步原理
- 2025年河北省定州市輔警招聘考試試題題庫含答案詳解(培優a卷)
- 2025年Z世代消費行為對新興品牌成長的深度影響報告
- 2026年高考物理大一輪復習講義 第一章 微點突破1 追及相遇問題
- 2025屆高考專題復習:文言文復習之翻譯
- 奶源質量控制策略
- 危重癥患者壓瘡護理
- 養老院醫生培訓
- 2025正規離婚協議書樣本范文
- 2025年山西文旅集團招聘筆試參考題庫含答案解析
- 品管圈PDCA獲獎案例提高護士對患者身份識別和查對制度的正確率
- 鹽酸裝卸車操作規程(3篇)
- 業主自治組織運作研究-洞察分析
- 零售連鎖店標準化運營手冊
- 2024年國家電網招聘之電工類考試題庫附答案(滿分必刷)
- TDT10722022國土調查坡度分級圖制作技術規定
- 三年級語文下冊 期末復習非連續文本閱讀專項訓練(五)(含答案)(部編版)
評論
0/150
提交評論