




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷含解析考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與的夾角為,,,則()A. B.0 C.0或 D.2.已知數列滿足:,則()A.16 B.25 C.28 D.333.已知函數,,則的極大值點為()A. B. C. D.4.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.15.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.86.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.7.已知函數則函數的圖象的對稱軸方程為()A. B.C. D.8.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,9.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.10.在區間上隨機取一個數,使直線與圓相交的概率為()A. B. C. D.11.已知正方體的棱長為1,平面與此正方體相交.對于實數,如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.12.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.己知函數,若曲線在處的切線與直線平行,則__________.14.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.15.某班有學生52人,現將所有學生隨機編號,用系統抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.16.請列舉用0,1,2,3這4個數字所組成的無重復數字且比210大的所有三位奇數:___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.18.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.19.(12分)已知函數,其中.(Ⅰ)當時,求函數的單調區間;(Ⅱ)設,求證:;(Ⅲ)若對于恒成立,求的最大值.20.(12分)已知,函數.(1)若,求的單調遞增區間;(2)若,求的值.21.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.22.(10分)已知函數,,若存在實數使成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由數量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點睛】本題主要考查向量數量積的運算和向量的模長平方等于向量的平方,考查學生的計算能力,屬于基礎題.2.C【解析】
依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.3.A【解析】
求出函數的導函數,令導數為零,根據函數單調性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區間單調遞增,在單調遞減,在單調遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數求函數的極值點,屬基礎題.4.A【解析】
由題意得到關于的等式,結合對數的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數學應用意識?信息處理能力?閱讀理解能力以及指數對數運算.5.B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.6.C【解析】
先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.7.C【解析】
,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數的對稱性的問題,在處理余弦型函數的性質時,一般采用整體法,結合三角函數的性質,是一道容易題.8.D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數z=x+2y經過C點時,函數取得最小值,由解得C(2,1),目標函數的最小值為:4目標函數的范圍是[4,+∞).故選D.9.B【解析】
依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【點睛】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題10.C【解析】
根據直線與圓相交,可求出k的取值范圍,根據幾何概型可求出相交的概率.【詳解】因為圓心,半徑,直線與圓相交,所以,解得所以相交的概率,故選C.【點睛】本題主要考查了直線與圓的位置關系,幾何概型,屬于中檔題.11.B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.12.D【解析】
根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求導,再根據導數的幾何意義,有求解.【詳解】因為函數,所以,所以,解得.故答案為:【點睛】本題考查導數的幾何意義,還考查運算求解能力以及數形結合思想,屬于基礎題.14.【解析】
設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.15.18【解析】
根據系統抽樣的定義和方法,所抽取的4個個體的編號成等差數列,故可根據其中三個個體的編號求出另一個個體的編號.【詳解】解:根據系統抽樣的定義和方法,所抽取的4個個體的編號成等差數列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18【點睛】本題主要考查系統抽樣的定義和方法,屬于簡單題.16.231,321,301,1【解析】
分個位數字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數字所組成的無重復數字比210大的所有三位奇數有:(1)當個位數字是1時,數字可以是231,321,301;(2)當個位數字是3時數字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數法的應用,考查了學生分類討論,數學運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)1;(2)5.【解析】
(1)由同角三角函數關系求得,再由兩角差的正弦公式求得,最后由正弦定理構建方程,求得答案.(2)在中,由正弦定理構建方程求得AB,再由任意三角形的面積公式構建方程求得BC,最后由余弦定理構建方程求得AC.【詳解】(1)據題意,,且,所以.所以.在中,據正弦定理可知,,所以.(2)在中,據正弦定理可知,所以.因為的面積為14,所以,即,得.在中,據余弦定理可知,,所以.【點睛】本題考查由正弦定理與余弦定理解三角形,還考查了由同角三角函數關系和兩角差的正弦公式化簡求值,屬于簡單題.18.(1)見解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質定理即可得證;(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,則,,設則由,可得,,即,所以可得,所以,設平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設平面與平面所成的二面角為,則,結合圖形可知平面與平面所成的二面角的余弦值為.【點睛】本題考查線面平行的判定定理及性質定理的應用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養,屬于中檔題.19.(Ⅰ)函數的單調增區間為,單調減區間為;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)利用二次求導可得,所以在上為增函數,進而可得函數的單調增區間為,單調減區間為;(Ⅱ)利用導數可得在區間上存在唯一零點,所以函數在遞減,在,遞增,則,進而可證;(Ⅲ)條件等價于對于恒成立,構造函數,利用導數可得的單調性,即可得到的最小值為,再次構造函數(a),,利用導數得其單調區間,進而求得最大值.【詳解】(Ⅰ)當時,,則,所以,又因為,所以在上為增函數,因為,所以當時,,為增函數,當時,,為減函數,即函數的單調增區間為,單調減區間為;(Ⅱ),則令,則(1),,所以在區間上存在唯一零點,設零點為,則,且,當時,,當,,,所以函數在遞減,在,遞增,,由,得,所以,由于,,從而;(Ⅲ)因為對于恒成立,即對于恒成立,不妨令,因為,,所以的解為,則當時,,為增函數,當時,,為減函數,所以的最小值為,則,不妨令(a),,則(a),解得,所以當時,(a),(a)為增函數,當時,(a),(a)為減函數,所以(a)的最大值為,則的最大值為.【點睛】本題考查利用導數研究函數的單調性和最值,以及函數不等式恒成立問題的解法,意在考查學生等價轉化思想和數學運算能力,屬于較難題.20.(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可得出函數的單調遞增區間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【詳解】(1)當時,,由,得,因此,函數的單調遞增區間為;(2),,,,,,.【點睛】本題主要考查三角函數的圖象
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土木工程中BIM技術的現狀與未來展望
- 陳述句與反問句的轉換
- 2024-2025學年度安徽省阜陽市太和縣中鑫嘉和實驗高級中學高一下學期期中質量檢測歷史試題(含答案)
- 幼兒故事歡慶元旦
- 如何增強房地產項目的投資吸引力
- 海綿城市建設中的BIM技術應用實例
- BIM技術在市政工程中的應用探討
- 噴涂作業人員防護口罩專題培訓
- 保險公司旅行活動方案
- 保險公司營銷活動方案
- 高效規劃優化工業園區的基礎設施布局
- 新能源汽車基礎知識培訓課件
- 客戶入廠安全培訓
- 浙江省醫療服務價格項目目錄
- 《現代家居風格解讀》課件
- 信息系統等級保護咨詢服務方案
- 建設單位質量安全保證體系
- 智慧社區人臉識別門禁系統改造方案
- 2025年藍莓行業市場需求分析報告及未來五至十年行業預測報告
- 室內拆除及裝修方案
- 移動式活動腳手架專項施工方案
評論
0/150
提交評論