




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市和平區(qū)雙菱中學2024年中考數(shù)學模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在體育課上,甲,乙兩名同學分別進行了5次跳遠測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差2.如圖,取一張長為、寬為的長方形紙片,將它對折兩次后得到一張小長方形紙片,若要使小長方形與原長方形相似,則原長方形紙片的邊應滿足的條件是()A. B. C. D.3.關于的分式方程解為,則常數(shù)的值為()A. B. C. D.4.圖1和圖2中所有的正方形都全等,將圖1的正方形放在圖2中的①②③④某一位置,所組成的圖形不能圍成正方體的位置是()A.① B.② C.③ D.④5.小強是一位密碼編譯愛好者,在他的密碼手冊中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對應下列六個字:昌、愛、我、宜、游、美,現(xiàn)將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結果呈現(xiàn)的密碼信息可能是()A.我愛美 B.宜晶游 C.愛我宜昌 D.美我宜昌6.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.847.下列各數(shù)中,為無理數(shù)的是()A. B. C. D.8.已知x﹣2y=3,那么代數(shù)式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.99.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n10.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學記數(shù)法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106二、填空題(共7小題,每小題3分,滿分21分)11.如圖,為了測量某棵樹的高度,小明用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點.此時,竹竿與這一點距離相距6m,與樹相距15m,則樹的高度為_________m.12.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.13.《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.14.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數(shù)圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.15.方程=1的解是___.16.如圖AB是直徑,C、D、E為圓周上的點,則______.17.若代數(shù)式在實數(shù)范圍內有意義,則實數(shù)x的取值范圍為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知AB是圓O的直徑,F(xiàn)是圓O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點E作ED⊥AF,交AF的延長線于點D.求證:DE是⊙O的切線;若DE=3,CE=2.①求的值;②若點G為AE上一點,求OG+EG最小值.19.(5分)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=kx的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=12,OB=4,OE=2(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;(2)求△OCD的面積;(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.20.(8分)已知拋物線經(jīng)過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側,當,兩點中只有一個點在圖形的內部時,請直接寫出的取值范圍.21.(10分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結果保留一位小數(shù).)22.(10分)“六一”期間,小張購述100只兩種型號的文具進行銷售,其中A種型號的文具進價為10元/只,售價為12元,B種型號的文具進價為15元1只,售價為23元/只.(1)小張如何進貨,使進貨款恰好為1300元?(2)如果購進A型文具的數(shù)量不少于B型文具數(shù)量的倍,且要使銷售文具所獲利潤不低于500元,則小張共有幾種不同的購買方案?哪一種購買方案使銷售文具所獲利潤最大?23.(12分)從2017年1月1日起,我國駕駛證考試正式實施新的駕考培訓模式,新規(guī)定C2駕駛證的培訓學時為40學時,駕校的學費標準分不同時段,普通時段a元/學時,高峰時段和節(jié)假日時段都為b元/學時.(1)小明和小華都在此駕校參加C2駕駛證的培訓,下表是小明和小華的培訓結算表(培訓學時均為40),請你根據(jù)提供的信息,計算出a,b的值.學員培訓時段培訓學時培訓總費用小明普通時段206000元高峰時段5節(jié)假日時段15小華普通時段305400元高峰時段2節(jié)假日時段8(2)小陳報名參加了C2駕駛證的培訓,并且計劃學夠全部基本學時,但為了不耽誤工作,普通時段的培訓學時不會超過其他兩個時段總學時的,若小陳普通時段培訓了x學時,培訓總費用為y元①求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍;②小陳如何選擇培訓時段,才能使得本次培訓的總費用最低?24.(14分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.求證:DE是⊙O的切線;若AD=16,DE=10,求BC的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越小;反之,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好。【詳解】由于方差能反映數(shù)據(jù)的穩(wěn)定性,需要比較這兩名學生立定跳遠成績的方差.故選D.2、B【解析】
由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,然后根據(jù)相似多邊形的定義,列出比例式即可求出結論.【詳解】解:由題圖可知:得對折兩次后得到的小長方形紙片的長為,寬為,∵小長方形與原長方形相似,故選B.【點睛】此題考查的是相似三角形的性質,根據(jù)相似三角形的定義列比例式是解決此題的關鍵.3、D【解析】
根據(jù)分式方程的解的定義把x=4代入原分式方程得到關于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.4、A【解析】
由平面圖形的折疊及正方體的表面展開圖的特點解題.【詳解】將圖1的正方形放在圖2中的①的位置出現(xiàn)重疊的面,所以不能圍成正方體,故選A.【點睛】本題考查了展開圖折疊成幾何體,解題時勿忘記四棱柱的特征及正方體展開圖的各種情形.注意:只要有“田”字格的展開圖都不是正方體的表面展開圖.5、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因為x﹣y,x+y,a+b,a﹣b四個代數(shù)式分別對應愛、我,宜,昌,所以結果呈現(xiàn)的密碼信息可能是“愛我宜昌”,故答案選C.考點:因式分解.6、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.7、D【解析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無理數(shù),故選D.8、A【解析】
解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故選A.9、D【解析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.10、B【解析】.故選B.點睛:在把一個絕對值較大的數(shù)用科學記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).二、填空題(共7小題,每小題3分,滿分21分)11、7【解析】設樹的高度為m,由相似可得,解得,所以樹的高度為7m12、【解析】
分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數(shù).本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數(shù),主要考查學生綜合運用定理進行推理和計算的能力.13、【解析】分析:由正方形的性質得到∠EDG=90°,從而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性質得到CK:KD=HD:HA,求解即可得到結論.詳解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案為:.點睛:本題考查了相似三角形的應用.解題的關鍵是證明△CKD∽△DHA.14、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據(jù)題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.15、x=﹣4【解析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】去分母得:3+2x=x﹣1,解得:x=﹣4,經(jīng)檢驗x=﹣4是分式方程的解.【點睛】此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.16、90°【解析】
連接OE,根據(jù)圓周角定理即可求出答案.【詳解】解:連接OE,
根據(jù)圓周角定理可知:
∠C=∠AOE,∠D=∠BOE,
則∠C+∠D=(∠AOE+∠BOE)=90°,
故答案為:90°.【點睛】本題主要考查了圓周角定理,解題要掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.17、x≤1【解析】
根據(jù)二次根式有意義的條件可求出x的取值范圍.【詳解】由題意可知:1﹣x≥0,∴x≤1故答案為:x≤1.【點睛】本題考查二次根式有意義的條件,解題的關鍵是利用被開方數(shù)是非負數(shù)解答即可.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)①②3【解析】
(1)作輔助線,連接OE.根據(jù)切線的判定定理,只需證DE⊥OE即可;(2)①連接BE.根據(jù)BC、DE兩切線的性質證明△ADE∽△BEC;又由角平分線的性質、等腰三角形的兩個底角相等求得△ABE∽△AFD,所以;②連接OF,交AD于H,由①得∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,故四邊形AOEF是菱形,由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=3.故OG+EG最小值是3.【詳解】(1)連接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切線(2)①解:連接BE∵直徑AB∴∠AEB=90°∵圓O與BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴②連接OF,交AE于G,由①,設BC=2x,則AE=3x∵△BEC∽△ABC∴∴解得:x1=2,(不合題意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,連接EF,則△AOF、△EOF都是等邊三角形,∴四邊形AOEF是菱形由對稱性可知GO=GF,過點G作GM⊥OE于M,則GM=EG,OG+EG=GF+GM,根據(jù)兩點之間線段最短,當F、G、M三點共線,OG+EG=GF+GM=FM最小,此時FM=FOsin60o=3.故OG+EG最小值是3.【點睛】本題考查了切線的性質、相似三角形的判定與性質.比較復雜,解答此題的關鍵是作出輔助線,利用數(shù)形結合解答.19、(1)y=-12x+2,y=-6x【解析】試題分析:(1)根據(jù)已知條件求出A、B、C點坐標,用待定系數(shù)法求出直線AB和反比例函數(shù)的解析式;(2)聯(lián)立一次函數(shù)的解析式和反比例的函數(shù)解析式可得交點D的坐標,從而根據(jù)三角形面積公式求解;(3)根據(jù)函數(shù)的圖象和交點坐標即可求解.試題解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x軸于點E,tan∠ABO=OAOB=CEBE=12,∴OA=2,CE=3,∴點A的坐標為(0,2)、點B∵一次函數(shù)y=ax+b的圖象與x,y軸交于B,A兩點,∴4a+b=0b=2,解得:a=-故直線AB的解析式為y=-1∵反比例函數(shù)y=kx的圖象過C,∴3=k-2,∴k(2)聯(lián)立反比例函數(shù)的解析式和直線AB的解析式可得:y=-12x+2y=-6x,可得交點D的坐標為(1,﹣1),則△(3)由圖象得,一次函數(shù)的值大于反比例函數(shù)的值時x的取值范圍:x<﹣2或0<x<1.點睛:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.20、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】
(1)把點,代入拋物線得關于a,b的二元一次方程組,解出這個方程組即可;(2)根據(jù)題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)∴點E的坐標為(n,n-2)當點E恰好在拋物線上時,解得,n=-1.∴此時n的取值范圍-1≤n<1.②如圖,當n>1時,依題可知點E的坐標為(2-n,-n)當點E在拋物線上時,解得,n=3或n=1.∵n>1.∴n=3.∴此時n的取值范圍1<n≤3.綜上所述,n的取值范圍為-1≤n<1或1<n≤3.【點睛】本題主要考查了二次函數(shù)與幾何圖形的綜合應用,掌握相關幾何圖形的性質和二次函數(shù)的性質是解題的關鍵.21、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據(jù)題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.22、(1)A種文具進貨40只,B種文具進貨60只;(2)一共有三種購貨方案,購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【解析】
(1)設可以購進A種型號的文具x只,則可以購進B種型號的文具只,根據(jù)總價=單價×數(shù)量結合A、B兩種文具的進價及總價,即可得出關于x的一元一次方程,解之即可得出結論;(2)根據(jù)題意列不等式,解之即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質,即可解決最值問題.【詳解】(1)設A種文具進貨x只,B種文具進貨只,由題意得:,解得:x=40,,答:A種文具進貨40只,B種文具進貨60只;(2)設購進A型文具a只,則有,且;解得:,∵a為整數(shù),∴a=48、49、50,一共有三種購貨方案;利潤,∵,w隨a增大而減小,當a=48時W最大,即購買A型文具48只,購買B型文具52只使銷售文具所獲利潤最大.【點睛】本題主要考查了一次函數(shù)的實際問題,熟練掌握一次函數(shù)表達式的確定以及自變量取值范圍的確定,最值的求解方法是解決本題的關鍵.23、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=時,y有最小值,此時y最小=-60×+7200=6400(元).【解析】
(1)根據(jù)小明和小華的培訓結算表列出關于a、b的二元一次方程組,解方程即可求解;(2)①根據(jù)培訓總費用=普通時段培訓費用+高峰時段和節(jié)假日時段培訓費用列出y與x之間的函數(shù)關系式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年公交優(yōu)先戰(zhàn)略與城市交通擁堵治理協(xié)同發(fā)展研究報告
- 安全管理考證試題及答案
- ppp項目培訓課件下載
- 電動貨車培訓課件圖片
- 周末收心班會課件
- 中國動漫繪畫課件下載
- 超聲引導下穿刺技術應用規(guī)范
- 中國刺繡課件英語
- 創(chuàng)意美術水果房子
- 中國農大葡萄酒課件
- 霧化吸入療法合理用藥專家共識(2024版)解讀
- 痹癥中醫(yī)護理方案
- 豬場分場長競聘述職報告
- 專利技術交底書
- 報案材料范本
- 大學生心理健康教育(蘭州大學版)學習通超星期末考試答案章節(jié)答案2024年
- 2024年變電設備檢修工(高級)技能鑒定理論考試題庫-上(選擇題)
- 林地贈與協(xié)議書(2篇)
- 北京朝陽社區(qū)工作者招聘歷年真題
- 安全及文明施工承諾書
- 工程量計算書(全部)
評論
0/150
提交評論