2025屆貴州省畢節市赫章縣數學高二上期末教學質量檢測試題含解析_第1頁
2025屆貴州省畢節市赫章縣數學高二上期末教學質量檢測試題含解析_第2頁
2025屆貴州省畢節市赫章縣數學高二上期末教學質量檢測試題含解析_第3頁
2025屆貴州省畢節市赫章縣數學高二上期末教學質量檢測試題含解析_第4頁
2025屆貴州省畢節市赫章縣數學高二上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆貴州省畢節市赫章縣數學高二上期末教學質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖已知正方體,點是對角線上的一點且,,則()A.當時,平面 B.當時,平面C.當為直角三角形時, D.當的面積最小時,2.設,為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.3.已知數列的通項公式是,則()A10100 B.-10100C.5052 D.-50524.設雙曲線:的左焦點和右焦點分別是,,點是右支上的一點,則的最小值為()A.5 B.6C.7 D.85.已知m,n表示兩條不同的直線,表示平面,則下列說法正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.“不到長城非好漢,屈指行程二萬”,出自毛主席1935年10月所寫的一首詞《清平樂·六盤山》,反映了中華民族的一種精神氣魄,一種積極向上的奮斗精神.從數學邏輯角度分析,其中“好漢”是“到長城”的()A.充分條件 B.必要條件C.充要條件 D.既不充分也不必要條件7.某手機上網套餐資費:每月流量500M以下(包含500M),按20元計費;超過500M,但沒超過1000M(包含1000M)時,超出部分按0.15元/M計費;超過1000M時,超出部分按0.2元/M計費,流量消費累計的總流量達到封頂值(15GB)則暫停當月上網服務.若小明使用該上網套餐一個月的費用是100元,則他的上網流量是()A.800M B.900MC.1025M D.1250M8.在平面直角坐標系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.9.已知數列滿足,(且),若恒成立,則M的最小值是()A.2 B.C. D.310.已知函數的圖象在點處的切線與直線垂直,則()A. B.C. D.11.已知橢圓的一個焦點坐標為,則的值為()A. B.C. D.12.在平面直角坐標系中,拋物線上點到焦點的距離為3,則焦點到準線的距離為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.若不等式的解集是,則的值是___________.14.已知雙曲線C:的一條漸近線與直線l:平行,則雙曲線C的離心率是______15.過點作圓的切線,則切線的方程為________16.在等差數列中,前n項和記作,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)寫出下列命題的否定,并判斷它們的真假:(1):任意兩個等邊三角形都是相似的;(2):,.18.(12分)2021年11月初某市出現新冠病毒感染者,該市教育局部署了“停課不停學”的行動,老師們立即開展了線上教學.某中學為了解教學效果,于11月30日復課第一天安排了測試,數學教師為了調查高二年級學生這次測試的數學成績與每天在線學習數學的時長之間的相關關系,對在校高二學生隨機抽取45名進行調查,了解到其中有25人每天在線學習數學的時長不超過1小時,并得到如下的統計圖:(1)根據統計圖填寫下面列聯表,是否有95%的把握認為“高二學生的這次摸底考試數學成績與其每天在線學習數學的時長有關”;數學成績不超過120分數學成績超過120分總計每天在線學習數學的時長不超過1小時25每天在線學習數學的時長超過1小時總計45(2)從被抽查的,且這次數學成績超過120分的學生中,按分層抽樣的方法抽取5名,再從這5名同學中隨機抽取2名,求這兩名同學中至多有一名每天在線學習數學的時長超過1小時的概率附:,其中.參考數據:0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)如圖,在四棱錐中,平面平面,,,是邊長為的等邊三角形,是以為斜邊的等腰直角三角形,點為線段的中點.(1)證明:平面;(2)求直線與平面所成角的正弦值.20.(12分)已知數列的各項均為正數,,為自然對數的底數(1)求函數的單調區間,并比較與的大小;(2)計算,,,由此推測計算的公式,并給出證明;21.(12分)在中,是的中點,,現將該平行四邊形沿對角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.22.(10分)已知公比的等比數列和等差數列滿足:,,其中,且是和的等比中項(1)求數列與的通項公式;(2)記數列的前項和為,若當時,等式恒成立,求實數的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】建立空間直角坐標系,利用空間向量法一一計算可得;【詳解】解:由題可知,如圖令正方體的棱長為1,建立空間直角坐標系,則,,,,,,,所以,因為,所以,所以,,,,設平面的法向量為,則,令,則,,所以對于A:若平面,則,則,解得,故A錯誤;對于B:若平面,則,即,解得,故B錯誤;當為直角三角形時,有,即,解得或(舍去),故C錯誤;設到的距離為,則,當的面積最小時,,故正確故選:2、A【解析】設,表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設,由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)3、D【解析】根據已知條件,用并項求和法即可求得結果.【詳解】∵∴∴.故選:D.4、C【解析】根據雙曲線的方程求出的值,由雙曲線的定義可得,由雙曲線的性質可知,利用函數的單調性即可求得最小值.【詳解】由雙曲線:可得,,所以,所以,,由雙曲線的定義可得,所以,所以,由雙曲線的性質可知:,令,則,所以上單調遞增,所以當時,取得最小值,此時點為雙曲線的右頂點,即的最小值為,故選:C.5、D【解析】根據空間直線與平面間的位置關系判斷【詳解】若,,也可以有,A錯;若,,也可以有,B錯;若,,則或,C錯;若,,則,這是線面垂直的判定定理之一,D正確故選:D6、A【解析】根據充分條件和必要條件的定義進行判斷即可【詳解】解:設為不到長城,推出非好漢,即,則,即好漢到長城,故“好漢”是“到長城”的充分條件,故選:A7、C【解析】根據已知條件列方程,化簡求得小明的上網流量.【詳解】顯然小明上網流量超過了1000M但遠遠沒達到封頂值,假設超出部分為M,由得.故選:C8、A【解析】設雙曲線半焦距為c,求出,由給定的正三角形建立等量關系,結合計算作答.【詳解】設雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A9、C【解析】根據,(且),利用累加法求得,再根據恒成立求解.【詳解】因為數列滿足,,(且)所以,,,,因為恒成立,所以,則M的最小值是,故選:C10、C【解析】對函數求導,利用導數的幾何意義結合垂直關系計算作答.【詳解】函數定義域為,求導得,于是得函數的圖象在點處切線的斜率,而直線的斜率為,依題意,,即,解得,所以.故選:C11、B【解析】根據題意得到得到答案.【詳解】橢圓焦點在軸上,且,故.故選:B.12、D【解析】根據給定條件求出拋物線C的焦點、準線,再利用拋物線的定義求出a值計算作答.【詳解】拋物線的焦點,準線,依題意,由拋物線定義得,解得,所以拋物線焦點到準線的距離為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用和是方程的兩根,再利用根與系數的關系即可求出和的值,即可得的值.【詳解】由題意可得:方程的兩根是和,由根與系數的關系可得:,所以,所以,故答案為:14、【解析】先用兩直線平行斜率相等求出,再利用離心率的定義求解即可.【詳解】由題意可得雙曲線C的一條漸近線方程為,則,即,則,故雙曲線C的離心率故答案為:.15、【解析】由已知可得點M在圓C上,則過M作圓的切線與CM所在的直線垂直,求出斜率,進而可得直線方程.【詳解】由圓得到圓心C的坐標為(0,

0),圓的半徑,而所以點M在圓C上,則過M作圓的切線與CM所在的直線垂直,又,得到CM所在直線的斜率為,所以切線的斜率為,則切線方程為:即故答案為:.16、16【解析】根據等差數列前項和公式及下標和性質以及通項公式計算可得;【詳解】解:因為,所以,即,所以,所以,所以;故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)存在兩個等邊三角形不是相似的,假命題(2),真命題【解析】根據全稱命題與存在性命題的關系,準確改寫,即可求解.【小問1詳解】解:命題“任意兩個等邊三角形都是相似的”是一個全稱命題根據全稱命題與存在性命題的關系,可得其否定“存在兩個等邊三角形不是相似的”,命題為假命題.【小問2詳解】解:根據全稱命題與存在性命題關系,可得:命題的否定為.因為,所以命題為真命題.18、(1)表格見解析,有(2)【解析】(1)根據統計圖計算填表即可;(2)根據古典概型計算公式計算即可.【小問1詳解】根據統計圖可得:每天在線學習數學的時長不超過1小時數學成績不超過120分的有人,每天在線學習數學的時長不超過1小時數學成績超過120分的有人,每天在線學習數學的時長超過1小時數學成績不超過120分的有人,每天在線學習數學的時長超過1小時數學成績超過120分的有人,可得列聯表如下:數學成績不超過120分數學成績超過120分總計每天在線學習數學的時長不超過1小時151025每天在線學習數學的時長超過1小時51520總計202545根據列聯表中的數據,所以有95%的把握認為“高二學生的這次摸底考試數學成績與其每天在線學習數學的時長有關”【小問2詳解】由列聯表可得,被抽查學生中這次數學成績超過120分的有25人,其中每天在線學習數學的時長不超過1小時的有10人,每天在線學習數學的時長超過1小時的有15人,人數比為2∶3,按分層抽樣每天在線學習數學的時長不超過1小時的抽2人,記為:1,2;每天在線學習數學的時長超過1小時的抽3人,記為:a,b,c.所有可能結果如下:,共計10種.設事件A為“兩名同學中至多有一名每天在線學習數學時長超過一小時”包含這7種可能結果所以19、(1)證明見解析;(2).【解析】(1)取的中點,連接,,證明兩兩垂直,如圖建系,求出的坐標以及平面的一個法向量,證明結合面,即可求證;(2)求出的坐標以及平面的法向量,根據空間向量夾角公式計算即可求解.【小問1詳解】如圖:取的中點,連接,,因為是邊長為等邊三角形,是以為斜邊的等腰直角三角形,可得,,因為面面,面面,,面,所以平面,因為面,所以,可得兩兩垂直,分別以所在的直線為軸建立空間直角坐標系,則,,,,,,所以,,,設平面的一個法向量,由,可得,令,則,所以,因為,所以,因為面,所以平面.【小問2詳解】,,,設平面的一個法向量,由,令,,,所以,設直線與平面所成角為,則.所以直線與平面所成角的正弦值為.20、(1)的單調遞增區間為,單調遞減區間為;(2)詳見解析【解析】(1)求出的定義域,利用導數求其最大值,得到,取即可得出答案.(2)由,變形求得,,,由此推測:然后用數學歸納法證明即可.【小問1詳解】的定義域為,當,即時,單調遞增;當,即時,單調遞減故的單調遞增區間為,單調遞減區間為當時,,即令,得,即【小問2詳解】;;由此推測:①下面用數學歸納法證明①(1)當時,左邊右邊,①成立(2)假設當時,①成立,即當時,,由歸納假設可得所以當時,①也成立根據(1)(2),可知①對一切正整數都成立21、(1)證明見解析(2)【解析】(1)先求出BD,通過勾股定理的逆定理得,再由面面垂直的性質得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問2詳解】因為點是的中點,在中,由(1)易知,.過點作垂直的延長線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論