




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古包頭市一中2023-2024學年高三5月學情調研測試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左焦點為,直線經過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.2.函數在上單調遞增,則實數的取值范圍是()A. B. C. D.3.已知復數,則的虛部為()A. B. C. D.14.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱5.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.366.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且7.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.8.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.9.已知銳角滿足則()A. B. C. D.10.已知二次函數的部分圖象如圖所示,則函數的零點所在區間為()A. B. C. D.11.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.12.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數滿足不等式組,則的最小值是___14.設,滿足約束條件,若的最大值是10,則________.15.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.16.已知命題:,,那么是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)小麗在同一城市開的2家店鋪各有2名員工.節假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調劑1人到該店維持營業,否則該店就停業.(1)求發生調劑現象的概率;(2)設營業店鋪數為X,求X的分布列和數學期望.18.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.19.(12分)已知等差數列{an}的前n項和為Sn,且(1)求數列{a(2)求數列{1Sn}的前20.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.21.(12分)在平面直角坐標系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標準方程;(2)設直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.22.(10分)如圖,已知橢圓經過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
直線的方程為,令和雙曲線方程聯立,再由得到兩交點坐標縱坐標關系進行求解即可.【詳解】由題意可知直線的方程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯立直線和雙曲線方程得到兩交點坐標關系和已知條件即可求解,屬于一般性題目.2、B【解析】
對分類討論,當,函數在單調遞減,當,根據對勾函數的性質,求出單調遞增區間,即可求解.【詳解】當時,函數在上單調遞減,所以,的遞增區間是,所以,即.故選:B.【點睛】本題考查函數單調性,熟練掌握簡單初等函數性質是解題關鍵,屬于基礎題.3、C【解析】
先將,化簡轉化為,再得到下結論.【詳解】已知復數,所以,所以的虛部為-1.故選:C【點睛】本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.4、D【解析】
先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.5、B【解析】
方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.6、D【解析】
首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.7、D【解析】
根據底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.8、D【解析】
做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.【點睛】本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.9、C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎題.10、B【解析】由函數f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據函數的零點存在性定理可知,函數g(x)的零點所在的區間是(0,1),故選B.11、A【解析】
由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設是的中心,則平面,,,外接球球心必在高上,設外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關鍵是由已知條件確定折疊成的三棱錐是正四面體.12、B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】作出可行域,如圖:由得,由圖可知當直線經過A點時目標函數取得最小值,A(1,0)所以-1故答案為-114、【解析】
畫出不等式組表示的平面區域,數形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區域如下所示:目標函數可轉化為與直線平行,數形結合可知當且僅當目標函數過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數的最值求參數值,屬基礎題.15、【解析】令直線:,與橢圓方程聯立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數法:若題目的條件和結論能體現一種明確的函數,則可首先建立起目標函數,再求這個函數的最值,求函數最值的常用方法有配方法,判別式法,重要不等式及函數的單調性法等.16、真命題【解析】
由冪函數的單調性進行判斷即可.【詳解】已知命題:,,因為在上單調遞增,則,所以是真命題,故答案為:真命題【點睛】本題主要考查了判斷全稱命題的真假,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析,【解析】
(1)根據題意設出事件,列出概率,運用公式求解;(2)由題得,X的所有可能取值為,根據(1)和變量對應的事件,可得變量對應的概率,即可得分布列和期望值.【詳解】(1)記2家小店分別為A,B,A店有i人休假記為事件(,1,2),B店有i人,休假記為事件(,1,2),發生調劑現象的概率為P.則,,.所以.答:發生調劑現象的概率為.(2)依題意,X的所有可能取值為0,1,2.則,,.所以X的分布表為:X012P所以.【點睛】本題是一道考查概率和期望的常考題型.18、(1)證明見解析(2)證明見解析【解析】
(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【點睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關鍵在于熟練掌握相關判定定理,找出平行關系和垂直關系證明.19、(1)an=2n【解析】
(1)先設出數列的公差為d,結合題中條件,求出首項和公差,即可得出結果.(2)利用裂項相消法求出數列的和.【詳解】解:(1)設公差為d的等差數列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數列的通項公式的求法及應用,裂項相消法在數列求和中的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.20、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.21、(1);(2)①證明見解析;②【解析】
(1)由題意焦距為2,設點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標準方程.(2)①由題意,聯立直線與橢圓的方程,得,推導出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設,,,,直線,代入橢圓標準方程:,得,推導出,,由此推導出(定值).【詳解】(1)由題意焦距為2,可設點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標準方程為.(2)①由題意,聯立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設,,,,直線,代入橢圓標準方程:,得,,,,(定值).【點睛】本題考查橢圓標準方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題.22、(1);(2)詳見解析.【解析】
(1)由橢圓離心率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論