浙江省臨海市第五教研區2024屆中考四模數學試題含解析_第1頁
浙江省臨海市第五教研區2024屆中考四模數學試題含解析_第2頁
浙江省臨海市第五教研區2024屆中考四模數學試題含解析_第3頁
浙江省臨海市第五教研區2024屆中考四模數學試題含解析_第4頁
浙江省臨海市第五教研區2024屆中考四模數學試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省臨海市第五教研區2024屆中考四模數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.比1小2的數是()A. B. C. D.2.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.3.實數a在數軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定4.的相反數是()A. B.- C. D.5.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數為()A.30° B.45° C.60° D.75°6.如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或57.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣48.把拋物線y=﹣2x2向上平移1個單位,再向右平移1個單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣19.估計﹣÷2的運算結果在哪兩個整數之間()A.0和1 B.1和2 C.2和3 D.3和410.對于反比例函數y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數的圖象關于直線y=﹣x成軸對稱二、填空題(共7小題,每小題3分,滿分21分)11.若正六邊形的內切圓半徑為2,則其外接圓半徑為__________.12.不等式組的所有整數解的積為__________.13.據媒體報道,我國研制的“察打一體”無人機的速度極快,經測試最高速度可達204000米/分,將204000這個數用科學記數法表示為_____.14.點(1,–2)關于坐標原點O的對稱點坐標是_____.15.分式方程的解為x=_____.16.若反比例函數的圖象位于第二、四象限,則的取值范圍是__.17.若一個三角形兩邊的垂直平分線的交點在第三邊上,則這個三角形是_____三角形.三、解答題(共7小題,滿分69分)18.(10分)一次函數y=34x的圖象如圖所示,它與二次函數y=ax2(1)求點C的坐標;(2)設二次函數圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數的關系式.19.(5分)在大城市,很多上班族選擇“低碳出行”,電動車和共享單車成為他們的代步工具.某人去距離家8千米的單位上班,騎共享單車雖然比騎電動車多用20分鐘,但卻能強身健體,已知他騎電動車的速度是騎共享單車的1.5倍,求騎共享單車從家到單位上班花費的時間.20.(8分)如圖,在Rt△ABC中,,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.求證:CE=AD;當D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由;若D為AB中點,則當=______時,四邊形BECD是正方形.21.(10分)在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結論.22.(10分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內接正六邊形ABCDEF;(要求:尺規作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.23.(12分)某地區教育部門為了解初中數學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統計圖和條形統計圖(均不完整).請根據統計圖中的信息解答下列問題:本次抽查的樣本容量是

;在扇形統計圖中,“主動質疑”對應的圓心角為

度;將條形統計圖補充完整;如果該地區初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?24.(14分)計算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】1-2=-1,故選C2、B【解析】

根據網格的特點求出三角形的三邊,再根據相似三角形的判定定理即可求解.【詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.3、C【解析】

根據數軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質及絕對值的代數意義化簡,去括號合并即可得到結果.【詳解】解:根據數軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質與化簡,以及實數與數軸,熟練掌握運算法則是解本題的關鍵.4、C【解析】

根據只有符號不同的兩個數互為相反數進行解答即可.【詳解】與只有符號不同,所以的相反數是,故選C.【點睛】本題考查了相反數的定義,熟練掌握相反數的定義是解題的關鍵.5、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質.6、A【解析】

連接B′D,過點B′作B′M⊥AD于M.設DM=B′M=x,則AM=7-x,根據等腰直角三角形的性質和折疊的性質得到:(7-x)2=25-x2,通過解方程求得x的值,易得點B′到BC的距離.【詳解】解:如圖,連接B′D,過點B′作B′M⊥AD于M,∵點B的對應點B′落在∠ADC的角平分線上,∴設DM=B′M=x,則AM=7﹣x,又由折疊的性質知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點B′到BC的距離為2或1.故選A.【點睛】本題考查的是翻折變換的性質,掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.7、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關鍵.8、B【解析】

∵函數y=-2x2的頂點為(0,0),∴向上平移1個單位,再向右平移1個單位的頂點為(1,1),∴將函數y=-2x2的圖象向上平移1個單位,再向右平移1個單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點睛】二次函數的平移不改變二次項的系數;關鍵是根據上下平移改變頂點的縱坐標,左右平移改變頂點的橫坐標得到新拋物線的頂點.9、D【解析】

先估算出的大致范圍,然后再計算出÷2的大小,從而得到問題的答案.【詳解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故選D.【點睛】本題主要考查的是二次根式的混合運算,估算無理數的大小,利用夾逼法估算出的大小是解題的關鍵.10、D【解析】分析:根據反比例函數的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質,靈活運用所學知識解決問題,屬于中考常考題型.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據題意畫出草圖,可得OG=2,,因此利用三角函數便可計算的外接圓半徑OA.【詳解】解:如圖,連接、,作于;則,∵六邊形正六邊形,∴是等邊三角形,∴,∴,∴正六邊形的內切圓半徑為2,則其外接圓半徑為.故答案為.【點睛】本題主要考查多邊形的內接圓和外接圓,關鍵在于根據題意畫出草圖,再根據三角函數求解,這是多邊形問題的解題思路.12、1【解析】

解:,解不等式①得:,解不等式②得:,∴不等式組的整數解為﹣1,1,1…51,所以所有整數解的積為1,故答案為1.【點睛】本題考查一元一次不等式組的整數解,準確計算是關鍵,難度不大.13、2.04×1【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是非負數;當原數的絕對值<1時,n是負數.【詳解】解:204000用科學記數法表示2.04×1.故答案為2.04×1.點睛:本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、(-1,2)【解析】

根據兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】A(1,-2)關于原點O的對稱點的坐標是(-1,2),

故答案為:(-1,2).【點睛】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規律.15、2【解析】根據分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.16、k>1【解析】

根據圖象在第二、四象限,利用反比例函數的性質可以確定1-k的符號,即可解答.【詳解】∵反比例函數y=的圖象在第二、四象限,∴1-k<0,∴k>1.故答案為:k>1.【點睛】此題主要考查了反比例函數的性質,熟練記憶當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限是解決問題的關鍵.17、直角三角形.【解析】

根據題意,畫出圖形,用垂直平分線的性質解答.【詳解】點O落在AB邊上,連接CO,∵OD是AC的垂直平分線,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O為圓心,以AB為直徑的圓周上,∴∠C是直角.∴這個三角形是直角三角形.【點睛】本題考查線段垂直平分線的性質,解題關鍵是準確畫出圖形,進行推理證明.三、解答題(共7小題,滿分69分)18、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據勾股定理用m表示出AC的長,根據△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數與一次函數的綜合題.19、騎共享單車從家到單位上班花費的時間是1分鐘.【解析】試題分析:設騎共享單車從家到單位上班花費x分鐘,找出題目中的等量關系,列出方程,求解即可.試題解析:設騎共享單車從家到單位上班花費x分鐘,依題意得:解得x=1.經檢驗,x=1是原方程的解,且符合題意.答:騎共享單車從家到單位上班花費的時間是1分鐘.20、(1)詳見解析;(2)菱形;(3)當∠A=45°,四邊形BECD是正方形.【解析】

(1)先求出四邊形ADEC是平行四邊形,根據平行四邊形的性質推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據菱形的判定推出即可;(3)求出∠CDB=90°,再根據正方形的判定推出即可.【詳解】(1)∵DE⊥BC,∴∠DFP=90°,∵∠ACB=90°,∴∠DFB=∠ACB,∴DE//AC,∵MN//AB,∴四邊形ADEC為平行四邊形,∴CE=AD;(2)菱形,理由如下:在直角三角形ABC中,∵D為AB中點,∴BD=AD,∵CE=AD,∴BD=CE,∴MN//AB,∴BECD是平行四邊形,∵∠ACB=90°,D是AB中點,∴BD=CD,(斜邊中線等于斜邊一半)∴四邊形BECD是菱形;(3)若D為AB中點,則當∠A=45°時,四邊形BECD是正方形,理由:∵∠A=45°,∠ACB=90°,∴∠ABC=45°,∵四邊形BECD是菱形,∴DC=DB,∴∠DBC=∠DCB=45°,∴∠CDB=90°,∵四邊形BECD是菱形,∴四邊形BECD是正方形,故答案為45°.【點睛】本題考查了平行四邊形的判定與性質,菱形的判定、正方形的判定,直角三角形斜邊中線的性質等,綜合性較強,熟練掌握和靈活運用相關知識是解題的關鍵.21、(1)證明見解析;(2)△APQ是等邊三角形.【解析】

(1)根據等邊三角形的性質可得AB=AC,再根據SAS證明△ABP≌△ACQ;(2)根據全等三角形的性質得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【點睛】本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質,考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關鍵.22、(1)答案見解析;(2)證明見解析.【解析】

(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論