




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆湖南省株洲市茶陵縣茶陵三中高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.2.已知是橢圓上的一點(diǎn),則點(diǎn)到兩焦點(diǎn)的距離之和是()A.6 B.9C.14 D.103.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.4.設(shè),“命題”是“命題”的()A.充分且不必要條件 B.必要且不充分條件C.充要條件 D.既不充分也不必要條件5.已知圓:的面積被直線平分,圓:,則圓與圓的位置關(guān)系是()A.相離 B.相交C.內(nèi)切 D.外切6.命題的否定是()A. B.C. D.7.若方程表示雙曲線,則此雙曲線的虛軸長等于()A. B.C. D.8.已知點(diǎn)到直線:的距離為1,則等于()A. B.C. D.9.設(shè)雙曲線的實(shí)軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.10.將一枚骰子連續(xù)拋兩次,得到正面朝上的點(diǎn)數(shù)分別為、,記事件A為“為偶數(shù)”,事件B為“”,則的值為()A. B.C. D.11.已知函數(shù)只有一個零點(diǎn),則實(shí)數(shù)的取值范圍是()A B.C. D.12.在四棱錐中,底面是正方形,為的中點(diǎn),若,則()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知A(1,3),B(5,-2),點(diǎn)P在x軸上,則使|AP|-|BP|取最大值的點(diǎn)P的坐標(biāo)是________14.某地區(qū)有3個疫苗接種定點(diǎn)醫(yī)院,現(xiàn)有10名志愿者將被派往這3個醫(yī)院協(xié)助新冠疫苗接種工作,每個醫(yī)院至少需要2名至多需要4名志愿者,則不同的安排方法共有___________種.15.已知等差數(shù)列的公差不為零,若,,成等比數(shù)列,則______.16.已知函數(shù),則函數(shù)在上的最大值為_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2017年廈門金磚會晤期間產(chǎn)生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會晤期間產(chǎn)生的碳排放,擬用20年時間將碳排放全部吸收,實(shí)現(xiàn)“零碳排放”目標(biāo),向世界傳遞低碳,環(huán)保辦會的積極信號,踐行金磚國家倡導(dǎo)的可持續(xù)發(fā)展精神據(jù)研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當(dāng)年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個遞推公式,表示與之間的關(guān)系;②證明:是等比數(shù)列,并求的通項(xiàng)公式;(2)為了提前5年實(shí)現(xiàn)廈門會晤“零碳排放”的目標(biāo),m的最小值為多少?參考數(shù)據(jù):,,18.(12分)直線經(jīng)過點(diǎn),且與圓相交與兩點(diǎn),截得的弦長為,求的方程.19.(12分)已知橢圓:的一個焦點(diǎn)與曲線的焦點(diǎn)重合,且離心率為.(1)求橢圓的方程(2)設(shè)直線:交橢圓于M,N兩點(diǎn).①若且的面積為,求的值.②若軸上的任意一點(diǎn)到直線與直線(為橢圓的右焦點(diǎn))的距離相等,求證:直線恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo)20.(12分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實(shí)現(xiàn)循環(huán)共享.某記者來到中國傳媒大學(xué)探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學(xué)期望.21.(12分)某餐館將推出一種新品特色菜,為更精準(zhǔn)確定最終售價,這種菜按以下單價各試吃1天,得到如下數(shù)據(jù):(1)求銷量關(guān)于的線性回歸方程;(2)預(yù)計(jì)今后的銷售中,銷量與單價服從(1)中的線性回歸方程,已知每份特色菜的成本是15元,為了獲得最大利潤,該特色菜的單價應(yīng)定為多少元?(附:,)22.(10分)已知拋物線的焦點(diǎn)為F,點(diǎn)是拋物線上的點(diǎn),且.(1)求拋物線方程;(2)直線與拋物線交于、兩點(diǎn),且.求△OPQ面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.2、A【解析】根據(jù)橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點(diǎn),則點(diǎn)到兩焦點(diǎn)的距離之和為,故選:A3、D【解析】根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號和極值點(diǎn),據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點(diǎn),且在這兩個零點(diǎn)的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點(diǎn)睛】本題考查導(dǎo)函數(shù)圖象的識別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號與零點(diǎn)情況,本題屬于基礎(chǔ)題.4、A【解析】根據(jù)充分、必要條件的概念理解,可得結(jié)果.【詳解】由,則或所以“”可推出“或”但“或”不能推出“”故命題是命題充分且不必要條件故選:A【點(diǎn)睛】本題主要考查充分、必要條件的概念理解,屬基礎(chǔ)題.5、D【解析】根據(jù)題意,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個圓的位置關(guān)系即可【詳解】根據(jù)題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經(jīng)過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標(biāo)準(zhǔn)方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個圓外切,故選:D.6、C【解析】根據(jù)含全稱量詞命題的否定可寫出結(jié)果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C7、B【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長為,故選:B.8、D【解析】利用點(diǎn)到直線的距離公式,即可求得參數(shù)的值.【詳解】因?yàn)辄c(diǎn)到直線:的距離為1,故可得,整理得,解得.故選:.9、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因?yàn)椋裕缘臐u近線方程為.故選:C.10、B【解析】利用條件概率的公式求解即可.【詳解】根據(jù)題意可知,若事件為“為偶數(shù)”發(fā)生,則、兩個數(shù)均為奇數(shù)或均為偶數(shù),其中基本事件數(shù)為,,,,,,,,,,,,,,,,,,一共個基本事件,∴,而A、同時發(fā)生,基本事件有當(dāng)一共有9個基本事件,∴,則在事件A發(fā)生的情況下,發(fā)生的概率為,故選:11、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個交點(diǎn),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個零點(diǎn),等價于函數(shù)的圖像與的圖像只有一個交點(diǎn),,求導(dǎo),令,得當(dāng)時,,函數(shù)在上單調(diào)遞減;當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減;故當(dāng)時,函數(shù)取得極小值;當(dāng)時,函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實(shí)數(shù)的取值范圍是故選:B【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.12、C【解析】由為的中點(diǎn),根據(jù)向量的運(yùn)算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點(diǎn),且,根據(jù)向量的運(yùn)算法則,可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先求得點(diǎn)A關(guān)于x軸的對稱點(diǎn),然后數(shù)形結(jié)合結(jié)合直線方程求解點(diǎn)P的坐標(biāo)即可.【詳解】點(diǎn)A(1,3)關(guān)于x軸的對稱點(diǎn)為A′(1,-3),如圖所示,連接A′B并延長交x軸于點(diǎn)P,即為所求直線A′B的方程是y+3=(x-1),即.令y=0,得x=13則點(diǎn)P的坐標(biāo)是.【點(diǎn)睛】本題主要考查直線方程的應(yīng)用,最值問題的求解,等價轉(zhuǎn)化的數(shù)學(xué)思想等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14、22050【解析】先分組,再排列,注意部分平均分組問題,需要除以平均組數(shù)的全排列.【詳解】根據(jù)題意,這10名志愿者的安排方法共有兩類:第一類是2,4,4,第二類是3,3,4.故不同的安排方法共有種.故答案為:2205015、0【解析】設(shè)等差數(shù)列的公差為,,根據(jù),,成等比數(shù)列,得到,再根據(jù)等差數(shù)列的通項(xiàng)公式可得結(jié)果.【詳解】設(shè)等差數(shù)列的公差為,,因?yàn)椋傻缺葦?shù)列,所以,所以,整理得,因?yàn)椋裕?故答案為:0.【點(diǎn)睛】本題考查了等比中項(xiàng),考查了等差數(shù)列通項(xiàng)公式基本量運(yùn)算,屬于基礎(chǔ)題.16、【解析】利用導(dǎo)數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點(diǎn),的大小求出在上的最大值.【詳解】因?yàn)椋瑒t,令,即時,函數(shù)單調(diào)遞增.令,即時,函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點(diǎn)為,,即最大值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據(jù)題意直接寫出一個遞推公式即可;②要證明是等比數(shù)列,只要證明為一個常數(shù)即可,求出等比數(shù)列的通項(xiàng)公式,即可求出的通項(xiàng)公式;(2)記為數(shù)列的前n項(xiàng)和,根據(jù)題意求出,利用分組求和法求出數(shù)列的前n項(xiàng)和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因?yàn)椋裕裕驗(yàn)樗詳?shù)列是等比數(shù)列,首項(xiàng)是,公比是1.02,所以,所以;【小問2詳解】解:記為數(shù)列的前n項(xiàng)和,,依題,所以,所以m最少為6.56噸18、或【解析】直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點(diǎn)到直線的距離公式列方程求出直線斜率,由點(diǎn)斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因?yàn)閳A的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點(diǎn)睛】本題主要考查點(diǎn)到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達(dá)定理求解;二是利用半弦長,弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.19、(1)(2)①;②證明見解析,定點(diǎn)的坐標(biāo)為【解析】(1)由所給條件確定基本量即可.(2)①代入消元,韋達(dá)定理整體思想,列出關(guān)于的方程從而得解;②由已知可知,得到關(guān)于、的一次關(guān)系式可得證.【小問1詳解】由已知橢圓的右焦點(diǎn)坐標(biāo)為,,所以,橢圓的方程:【小問2詳解】①將與橢圓方程聯(lián)立得.設(shè),,則,解得,∴,,點(diǎn)到直線的距離為,∴,解得(舍去負(fù)值),∴.②設(shè),,將與橢圓方程聯(lián)立,得,當(dāng)時,∴,,,若軸上任意一點(diǎn)到直線與的距離均相等,則軸為直線與的夾角的平分線,∴,即,∴.∴,解得.∴.∴直線恒過一定點(diǎn),該定點(diǎn)的坐標(biāo)為.20、(1);(2)分布列見解析,數(shù)學(xué)期望為.【解析】(1)先求出兩種顏色的電動車各有多少輛,然后根據(jù)超幾何分布求概率的方法即可求得答案;(2)先確定X的所有可能取值,進(jìn)而求出概率并列出分布列,然后根據(jù)期望公式求出答案.【小問1詳解】因?yàn)閺?0輛共享電動車中任取一輛,取到橙色的概率為0.4,所以橙色的電動車有4輛,熒光綠的電動車有6輛.記A為“從中任取3輛共享單車中恰好有一輛是橙色”,則.【小問2詳解】隨機(jī)變量X的所有可能取值為0,1,2,3.所以,,,.所以分布列為0123數(shù)學(xué)期望.21、(1)(2)24【解析】(1)求出,的值,根據(jù)公式求出的值,代入公式即可求出回歸直線方程(2)根據(jù)(1)的結(jié)論,求出利潤,根據(jù)二次函數(shù)的性質(zhì),即可求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 普通員工愛崗敬業(yè)演講稿(17篇)
- 教師普通話培訓(xùn)工作總結(jié)(8篇)
- 貨物貿(mào)易買賣合同書(20篇)
- 項(xiàng)目合作協(xié)議書經(jīng)典2025(18篇)
- 文書模板-《材料計(jì)劃滯后情況說明》
- 2025年物業(yè)年終個人工作總結(jié)(4篇)
- 大二的學(xué)習(xí)計(jì)劃范文(15篇)
- 股東權(quán)益股權(quán)質(zhì)押協(xié)議
- 售票廳施工合同協(xié)議
- 德國房東賣房合同協(xié)議
- 2024年內(nèi)蒙古師范大學(xué)招聘事業(yè)編制人員考試真題
- (二模)2025年河南省五市高三第二次聯(lián)考?xì)v史試卷(含答案)
- 飛行員勞動合同模板及條款
- 《勞動項(xiàng)目五:煮雞蛋》(教案)-2024-2025學(xué)年人教版勞動三年級上冊
- 第中西藝術(shù)時空對話 課件 2024-2025學(xué)年嶺南美版(2024) 初中美術(shù)七年級下冊
- 2025-2030檢測設(shè)備行業(yè)行業(yè)風(fēng)險(xiǎn)投資發(fā)展分析及投資融資策略研究報(bào)告
- (三模)廣西2025屆高中畢業(yè)班4月份適應(yīng)性測試 英語試卷(含答案解析)
- 2025年二級建造師之二建礦業(yè)工程實(shí)務(wù)通關(guān)考試題庫帶答案解析
- (四調(diào))武漢市2025屆高中畢業(yè)生四月調(diào)研考試 物理試卷(含答案)
- 中級財(cái)務(wù)會計(jì)課件第四章 金融資產(chǎn)學(xué)習(xí)資料
- 2025年濟(jì)南市中區(qū)九年級中考數(shù)學(xué)一模考試試題(含答案)
評論
0/150
提交評論