




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省廣州市華南師大附屬中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.空間直角坐標(biāo)系中,已知?jiǎng)t點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為()A. B.C. D.2.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b23.等比數(shù)列的各項(xiàng)均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.4.已知等差數(shù)列{an}中,a4+a9=8,則S12=()A.96 B.48C.36 D.245.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.《九章算術(shù)》是我國(guó)古代的數(shù)學(xué)巨著,書中有如下問題:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次漸多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次從高變低)5個(gè)人共出100錢,按照爵位從高到低每人所出錢數(shù)成等差數(shù)列,問這5個(gè)人各出多少錢?”在這個(gè)問題中,若公士出28錢,則不更出的錢數(shù)為()A.14 B.20C.18 D.167.在棱長(zhǎng)為1的正方體中,為的中點(diǎn),則點(diǎn)到直線的距離為()A. B.1C. D.8.已知拋物線:的焦點(diǎn)為,為上一點(diǎn)且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點(diǎn),且,,三點(diǎn)共線,則()A.2 B.4C.6 D.89.已知函數(shù)的圖象過點(diǎn),令.記數(shù)列的前n項(xiàng)和為,則()A. B.C. D.10.已知A(3,2),點(diǎn)F為拋物線的焦點(diǎn),點(diǎn)P在拋物線上移動(dòng),為使取得最小值,則點(diǎn)P的坐標(biāo)為()A.(0,0) B.(2,2)C. D.11.已知橢圓C:的左右焦點(diǎn)為F1,F2離心率為,過F2的直線l交C與A,B兩點(diǎn),若△AF1B的周長(zhǎng)為,則C的方程為A. B.C. D.12.拋物線的焦點(diǎn)坐標(biāo)為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的頂點(diǎn)為O,焦點(diǎn)為F,動(dòng)點(diǎn)B在C上,若點(diǎn)B,O,F(xiàn)構(gòu)成一個(gè)斜三角形,則______14.已知函數(shù)定義域?yàn)椋涤驗(yàn)椋瑒t______15.已知、分別為雙曲線的左、右焦點(diǎn),為雙曲線右支上一點(diǎn),滿足,直線與圓有公共點(diǎn),則雙曲線的離心率的取值范圍是___________.16.已知雙曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,則其漸近線方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)若對(duì),恒成立,求的取值范圍.18.(12分)已知橢圓C:()的離心率為,并且經(jīng)過點(diǎn),(1)求橢圓C的方程;(2)設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)為橢圓C上任意一點(diǎn),直線的斜率分別為,,求證:為定值19.(12分)圓經(jīng)過兩點(diǎn),且圓心在直線上.(1)求圓的方程;(2)求圓與圓的公共弦的長(zhǎng).20.(12分)如圖,已知拋物線的焦點(diǎn)為F,拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于C,D兩點(diǎn),M,N分別為弦AB,CD的中點(diǎn),求|MF|·|NF|的最小值21.(12分)如圖,水平桌面上放置一個(gè)棱長(zhǎng)為4的正方體的水槽,水面高度恰為正方體棱長(zhǎng)的一半,在該正方體側(cè)面有一個(gè)小孔(小孔的大小忽略不計(jì))E,E點(diǎn)到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當(dāng)水恰好流出時(shí),側(cè)面與桌面所成的角的大小.22.(10分)在等差數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)空間直角坐標(biāo)系的對(duì)稱性可得答案.【詳解】根據(jù)空間直角坐標(biāo)系的對(duì)稱性可得關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)為,故選:D.2、A【解析】利用三次函數(shù)的單調(diào)性,通過其導(dǎo)數(shù)進(jìn)行研究,求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點(diǎn)睛】可導(dǎo)函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實(shí)際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來進(jìn)行求解.3、C【解析】利用數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對(duì)數(shù)運(yùn)算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點(diǎn)睛】本題考查數(shù)量積運(yùn)算性質(zhì)、等比數(shù)列的性質(zhì)及其對(duì)數(shù)運(yùn)算性質(zhì),考查推理能力與計(jì)算能力,屬于中檔題4、B【解析】利用等差數(shù)列的性質(zhì)求解即可.【詳解】解:由等差數(shù)列的性質(zhì)得.故選:B5、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進(jìn)行判斷即可【詳解】若的焦距,則;若,則故選:A6、D【解析】根據(jù)題意,建立等差數(shù)列模型,結(jié)合等差數(shù)列公式求解即可.【詳解】解:根據(jù)題意,設(shè)每人所出錢數(shù)成等差數(shù)列,公差為,前項(xiàng)和為,則由題可得,解得,所以不更出的錢數(shù)為.故選:D.7、B【解析】建立空間直角坐標(biāo)系,利用空間向量點(diǎn)到直線的距離公式進(jìn)行求解即可【詳解】建立如圖所示的空間直角坐標(biāo)系,由已知,得,,,,,所以在上的投影為,所以點(diǎn)到直線的距離為故選:B8、B【解析】根據(jù),,三點(diǎn)共線,結(jié)合點(diǎn)到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點(diǎn)共線,∴是圓的直徑,∴,軸,又為的中點(diǎn),且點(diǎn)到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.9、D【解析】由已知條件推導(dǎo)出,.由此利用裂項(xiàng)求和法能求出【詳解】解:由,可得,解得,則.∴,故選:【點(diǎn)睛】本題考查了函數(shù)的性質(zhì)、數(shù)列的“裂項(xiàng)求和”,考查了推理能力與計(jì)算能力,屬于中檔題10、B【解析】設(shè)點(diǎn)P到準(zhǔn)線的距離為,根據(jù)拋物線的定義可知,即可根據(jù)點(diǎn)到直線的距離最短求出【詳解】如圖所示:設(shè)點(diǎn)P到準(zhǔn)線的距離為,準(zhǔn)線方程為,所以,當(dāng)且僅當(dāng)點(diǎn)為與拋物線的交點(diǎn)時(shí),取得最小值,此時(shí)點(diǎn)P的坐標(biāo)為故選:B11、A【解析】若△AF1B的周長(zhǎng)為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點(diǎn):橢圓方程及性質(zhì)12、D【解析】拋物線的標(biāo)準(zhǔn)方程為,從而可得其焦點(diǎn)坐標(biāo)【詳解】拋物線的標(biāo)準(zhǔn)方程為,故其焦點(diǎn)坐標(biāo)為,故選D.【點(diǎn)睛】本題考查拋物線的性質(zhì),屬基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】畫出簡(jiǎn)單示意圖,令,根據(jù)拋物線定義可得,應(yīng)用數(shù)形結(jié)合及B在C上,求目標(biāo)式的值.【詳解】如下圖,令,直線為拋物線準(zhǔn)線,軸,由拋物線定義知:,又且,所以,故,又,故.故答案為:2.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:應(yīng)用拋物線的定義將轉(zhuǎn)化為,再由三角函數(shù)的定義及點(diǎn)在拋物線上求值.14、3【解析】根據(jù)定義域和值域,結(jié)合余弦函數(shù)的圖像與性質(zhì)即可求得的值,進(jìn)而得解.【詳解】因?yàn)椋捎嘞液瘮?shù)的圖像與性質(zhì)可得,則,由值域?yàn)榭傻茫裕蚀鸢笧椋?.【點(diǎn)睛】本題考查了余弦函數(shù)圖像與性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.15、【解析】過點(diǎn)作于,過點(diǎn)作于,利用雙曲線的定義以及勾股定理可求得,由已知可得,可得出關(guān)于、的齊次不等式,結(jié)合可求得的取值范圍.【詳解】過點(diǎn)作于,過點(diǎn)作于,因?yàn)椋裕忠驗(yàn)椋裕剩忠驗(yàn)椋遥裕虼耍裕忠驗(yàn)橹本€與圓有公共點(diǎn),所以,故,即,則,所以,又因?yàn)殡p曲線的離心率,所以.故答案為:.16、【解析】根據(jù)雙曲線的定義由焦點(diǎn)坐標(biāo)求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因?yàn)殡p曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為,無(wú)極大值;(2).【解析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo)、列表、判斷函數(shù)的單調(diào)性,最后根據(jù)函數(shù)極值的定義進(jìn)行求解即可;(2)對(duì)進(jìn)行常變量分離,然后構(gòu)造新函數(shù),對(duì)新函數(shù)進(jìn)行求導(dǎo),判斷其單調(diào)性,進(jìn)而求出新函數(shù)的最值,最后根據(jù)題意求出的取值范圍即可.【詳解】(1)函數(shù)的定義域?yàn)椋?dāng)時(shí),.由,得.當(dāng)變化時(shí),,的變化情況如下表-0+單調(diào)遞減極小值單調(diào)遞增所以在上單調(diào)遞減,上單調(diào)遞增,所以函數(shù)的極小值為,無(wú)極大值.(2)對(duì),恒成立,即對(duì),恒成立.令,則.由得,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,所以,因此.所以的取值范圍是.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,考查了構(gòu)造函數(shù)法、常變量分離法,考查了數(shù)學(xué)運(yùn)算能力和分類討論思想.18、(1)(2)證明見解析【解析】(1)根據(jù)題意可列出關(guān)于的三個(gè)方程,解出即可得到橢圓C的方程;(2)根據(jù)對(duì)稱可得點(diǎn)坐標(biāo),再根據(jù)斜率公式可得,然后由點(diǎn)為橢圓C上的點(diǎn)得,代入化簡(jiǎn)即可求出為定值【小問1詳解】由題意解得,.所以橢圓C的方程為.【小問2詳解】因?yàn)辄c(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,所以的坐標(biāo)為.,,所以,又因?yàn)辄c(diǎn)為橢圓C上的點(diǎn),所以.19、(1)(2)【解析】(1)設(shè)圓的方程為,代入所過的點(diǎn)后可求,從而可求圓的方程.(2)利用兩圓的方程可求公共弦的方程,利用垂徑定理可求公共弦的弦長(zhǎng).【小問1詳解】設(shè)圓的方程為,,,所以圓的方程為;【小問2詳解】由圓的方程和圓的方程可得公共弦的方程為:,整理得到:,到公共弦距離為,故公共弦的弦長(zhǎng)為:.20、(1)(2)8【解析】(1)由拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問1詳解】解:因?yàn)閽佄锞€C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問2詳解】解:由(1)可知焦點(diǎn)為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則,因?yàn)镸(xM,yM)為弦AB的中點(diǎn),所以,由,得,所以點(diǎn),同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以的最小值為21、(1)證明見解析(2)【解析】(1)由水的體積得出,進(jìn)而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過點(diǎn)作,交于,由四邊形是平行四邊形,得出側(cè)面與桌面所成的角即側(cè)面與水面所成的角,再由直角三角形的邊角關(guān)系得出其夾角.【小問1詳解】由題意知,水的體積為,如圖所示,設(shè)正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省長(zhǎng)春實(shí)驗(yàn)高中2025年高考仿真卷英語(yǔ)試卷含答案
- 2025機(jī)密股權(quán)轉(zhuǎn)讓合同
- 2025年建筑行業(yè)-勞務(wù)員模擬考試題庫(kù)試卷
- 聚焦2025年科技企業(yè)孵化器建設(shè)資金申請(qǐng)熱點(diǎn)問題解析與解決方案報(bào)告
- 2025商業(yè)店鋪?zhàn)赓U保證金合同樣本
- 2025年中國(guó)智慧藥房行業(yè)市場(chǎng)占有率及投資前景預(yù)測(cè)分析報(bào)告
- 農(nóng)村電商農(nóng)產(chǎn)品上行模式創(chuàng)新與品牌價(jià)值傳播渠道拓展研究報(bào)告
- 新能源汽車充電設(shè)施建設(shè)資金申請(qǐng)項(xiàng)目實(shí)施效果與市場(chǎng)挑戰(zhàn)報(bào)告
- 金融風(fēng)險(xiǎn)防范新方法:2025年大數(shù)據(jù)在反欺詐領(lǐng)域的應(yīng)用突破
- 2025網(wǎng)絡(luò)文學(xué)出海內(nèi)容創(chuàng)新:跨文化傳播與創(chuàng)意產(chǎn)業(yè)報(bào)告
- 2023年承德縣小升初英語(yǔ)考試題庫(kù)及答案解析
- 2023年大學(xué)生《思想道德與法治》考試題庫(kù)附答案(712題)
- GB/T 7705-2008平版裝潢印刷品
- GB/T 41326-2022六氟丁二烯
- 廣西玉林市容縣十里中學(xué)九年級(jí)化學(xué) 酸堿鹽復(fù)習(xí)課件 人教新課標(biāo)版
- 核電質(zhì)量保證-質(zhì)量體系培訓(xùn)課件
- 鏟車三個(gè)月、半年、年保養(yǎng)記錄(新)
- 重力壩畢業(yè)設(shè)計(jì)-水電站混凝土重力壩工程設(shè)計(jì)
- 腦電圖(圖譜)課件
- 《概率思想對(duì)幾個(gè)恒等式的證明(論文)9600字》
- 重金屬冶金學(xué)-鈷冶金課件
評(píng)論
0/150
提交評(píng)論