




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省十堰市第二中學(xué)高二上數(shù)學(xué)期末檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的大致圖象是()A. B.C. D.2.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.3.設(shè)雙曲線的實(shí)軸長(zhǎng)為8,一條漸近線為,則雙曲線的方程為()A. B.C. D.4.已知實(shí)數(shù),滿足約束條件則的最大值為()A.10 B.8C.4 D.205.已知數(shù)列的前n項(xiàng)和為,且對(duì)任意正整數(shù)n都有,若,則()A.2019 B.2020C.2021 D.20226.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-67.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.28.在中,角,,所對(duì)的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定9.若,則下列結(jié)論不正確的是()A. B.C. D.10.意大利數(shù)學(xué)家斐波那契,以兔子繁殖為例,引入“兔子數(shù)列”,,,,,,,,…,在實(shí)際生活中很多花朵的瓣數(shù)恰是斐波那契數(shù)列中的數(shù),斐波那契數(shù)列在物理化學(xué)等領(lǐng)域也有著廣泛的應(yīng)用.已知斐波那契數(shù)列滿足:,,,若,則等于()A. B.C. D.11.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%12.已知點(diǎn),,,動(dòng)點(diǎn)P滿足,則的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,若,,則_____14.在等比數(shù)列中,已知,則________15.已知拋物線C:的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F斜率為的直線與拋物線C交于點(diǎn)M(M在x軸的上方),過M作于點(diǎn)N,連接NF交拋物線C于點(diǎn)Q,則__________16.已知等差數(shù)列中,,,則______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公差不為0的等差數(shù)列,首項(xiàng),且成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足,求數(shù)列的前n項(xiàng)和18.(12分)已知雙曲線的左,右焦點(diǎn)為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點(diǎn),若,求k的值.19.(12分)已知橢圓的上一點(diǎn)處的切線方程為,橢圓C上的點(diǎn)與其右焦點(diǎn)F的最短距離為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若點(diǎn)P為直線上任一點(diǎn),過P作橢圓的兩條切線PA,PB,切點(diǎn)為A,B,求證:20.(12分)已知等比數(shù)列的公比,,.(1)求數(shù)列的通項(xiàng)公式;(2)令,若,求滿足條件的最大整數(shù)n.21.(12分)已知命題:方程表示焦點(diǎn)在軸上的雙曲線,命題:關(guān)于的方程無實(shí)根(1)若命題為真命題,求實(shí)數(shù)的取值范圍;(2)若“”為假命題,"”為真命題,求實(shí)數(shù)的取值范圍22.(10分)如圖所示的四棱錐的底面是一個(gè)等腰梯形,,且,是△的中線,點(diǎn)E是棱的中點(diǎn)(1)證明:∥平面(2)若平面平面,且,求平面與平面夾角余弦值(3)在(2)條件下,求點(diǎn)D到平面的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由得出函數(shù)是奇函數(shù),再求得,,運(yùn)用排除法可得選項(xiàng).【詳解】法一:由函數(shù),則,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,所以排除B;因?yàn)椋耘懦鼶;因?yàn)椋耘懦鼵,故選:A.【點(diǎn)睛】思路點(diǎn)睛:函數(shù)圖象的辨識(shí)可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢(shì);(3)從函數(shù)的奇偶性,判斷圖象的對(duì)稱性;(4)從函數(shù)的特征點(diǎn),排除不合要求的圖象.2、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.3、D【解析】雙曲線的實(shí)軸長(zhǎng)為,漸近線方程為,代入解析式即可得到結(jié)果.【詳解】雙曲線的實(shí)軸長(zhǎng)為8,即,,漸近線方程為,進(jìn)而得到雙曲線方程為.故選:D.4、A【解析】根據(jù)約束條件作出可行域,再將目標(biāo)函數(shù)表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉(zhuǎn)化為,令則,作出直線并平移使它經(jīng)過可行域點(diǎn),經(jīng)過時(shí),,解得,所以此時(shí)取得最大值,即有最大值,即故選:A.5、C【解析】先令代入中,求得,再根據(jù)遞推式得到,將與已知相減,可判斷數(shù)列是等比數(shù)列,進(jìn)而確定,求得答案.【詳解】因?yàn)椋睿瑒t,又,故,即,故數(shù)列是等比數(shù)列,則,所以,所以,故選:C.6、D【解析】根據(jù)向量共面列方程,化簡(jiǎn)求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D7、B【解析】根據(jù)等比數(shù)列的性質(zhì)計(jì)算.【詳解】由等比數(shù)列的性質(zhì)可知,且等比數(shù)列奇數(shù)項(xiàng)的符號(hào)相同,所以,即.故選:B8、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因?yàn)椋裕裕缘男螤顬殁g角三角形.故選:C9、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來判斷各選項(xiàng)中不等式的正誤.【詳解】,,,,A選項(xiàng)正確;,B選項(xiàng)錯(cuò)誤;由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,,則等號(hào)不成立,所以,C選項(xiàng)正確;,,D選項(xiàng)正確.故選:B.【點(diǎn)睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.10、A【解析】利用可化簡(jiǎn)得,由此可得.【詳解】由得:,,即.故選:A.11、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.12、C【解析】由題設(shè)分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點(diǎn)的距離范圍即可.【詳解】由題設(shè),在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點(diǎn)的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列下標(biāo)和性質(zhì)計(jì)算可得;【詳解】解:∵在等比數(shù)列中,,∴原式故答案為:【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、2【解析】由等比數(shù)列的相關(guān)性質(zhì)進(jìn)行求解.【詳解】由等比數(shù)列的相關(guān)性質(zhì)得:故答案為:215、【解析】由題意畫出圖形,寫出直線的方程,與拋物線方程聯(lián)立求出的坐標(biāo),進(jìn)一步求出的坐標(biāo),求得即可求解【詳解】解:如圖,由拋物線,得,,則,與拋物線聯(lián)立得,解得、,,,,,為等邊三角形,,過作軸的垂線交軸于,設(shè),,,,,在拋物線上,,解得,,,,則,故答案為:16、【解析】設(shè)等差數(shù)列的公差為,依題意得到方程,求出公差,再根據(jù)等差數(shù)列通項(xiàng)公式計(jì)算可得;【詳解】解:設(shè)等差數(shù)列的公差為,因?yàn)椋裕裕怨蚀鸢笧椋喝⒔獯痤}:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)設(shè)數(shù)列的公差為d,根據(jù)等比中項(xiàng)的概念即可求出公差,再根據(jù)等差數(shù)列的通項(xiàng)公式即可求出答案;(2)由(1)得,再根據(jù)分組求和法即可求出答案【詳解】解:(1)設(shè)數(shù)列的公差為d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式,考查數(shù)列的分組求和法,考查計(jì)算能力,屬于基礎(chǔ)題18、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設(shè),則的中點(diǎn)為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達(dá)定理可得答案.【小問1詳解】設(shè),則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直角,,設(shè),則的中點(diǎn)為,,由,可知,所以,即,因?yàn)榈姆匠虨椋p曲線的漸近線方程可寫為,由消去y,得,所以,,所以,因?yàn)椋裕?19、(1)(2)證明見解析【解析】(1)設(shè)為橢圓上的點(diǎn),為橢圓的右焦點(diǎn),求出然后求解最小值,推出,,,得到雙曲線方程(2)設(shè),,,,,即可得到,依題意可得以、為切點(diǎn)的切線方程,從而得到直線的方程,再分與兩種情況討論,即可得證;【小問1詳解】解:設(shè)為橢圓上的點(diǎn),為橢圓的右焦點(diǎn),因?yàn)椋裕郑援?dāng)且僅當(dāng)時(shí),,因?yàn)椋裕驗(yàn)椋裕蕶E圓的標(biāo)準(zhǔn)方程為【小問2詳解】解:由(1)知,設(shè),,,,,所以,由題知,以為切點(diǎn)的橢圓切線方程為,以為切點(diǎn)的橢圓切線方程為,又點(diǎn)在直線、上,所以、,所以直線的方程為,當(dāng)時(shí),直線的斜率不存在,直線斜率為,所以,當(dāng)時(shí),,所以,所以,綜上可得;20、(1)(2)【解析】(1)由等比數(shù)列的性質(zhì)可得,結(jié)合條件求出,得出公比,從而得出通項(xiàng)公式.(2)由(1)可得,再求出的前項(xiàng)和,從而可得出答案.【小問1詳解】由題意可知,有,,得或∴或又,∴∴【小問2詳解】,∴∴,又單調(diào)遞增,所以滿足條件的的最大整數(shù)為21、(1);(2).【解析】(1)由雙曲線標(biāo)準(zhǔn)方程的性質(zhì)得,即可求m的范圍;(2)當(dāng)q命題為真時(shí),方程無實(shí)根,判別式小于零,求得m的范圍,再由復(fù)合命題的真假得和一真一假,列出不等式組運(yùn)算可得解【小問1詳解】∵方程表示焦點(diǎn)在軸上的雙曲線,∴,解得【小問2詳解】若為真命題,則,解得,∵“”為假命題,”為真命題,∴一真一假當(dāng)真假時(shí),“”且“或”,則;當(dāng)假真時(shí),,則綜上所述,實(shí)數(shù)的取值范圍是22、(1)證明見解析;(2);(3).【解析】(1)連接、,平行四邊形的性質(zhì)、線面平行的判定可得平面、平面,再根據(jù)面面平行的判定可得平面平面,利用面面平行的性質(zhì)可證結(jié)論;(2)取的中點(diǎn)為,連接,證明出平面,,以為坐標(biāo)原點(diǎn),、、的方向分別為軸、軸、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得平面與平面所成銳二面角的余弦值.(3)利用等體積法,求D到平面的距離【小問1詳解】連接、,由、分別是棱、的中點(diǎn),則,平面,平面,則平面又,且,∴且,四邊形是平行四邊形,則,平面,平面,則平面又,可得平面平面.又平面∴平面【小問2詳解】由知:,又平面平面,平面平面,平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司采購合金管理制度
- 塔吊特種設(shè)備管理制度
- 計(jì)算機(jī)三級(jí)考試個(gè)性化學(xué)習(xí)試題及答案
- 員工外出檢測(cè)管理制度
- 健全安全生產(chǎn)管理制度
- 嵌入式開發(fā)中的數(shù)據(jù)采集技術(shù)試題及答案
- 小區(qū)門口車輛管理制度
- 公司禮品預(yù)訂管理制度
- 學(xué)校基建后勤管理制度
- 塔吊作業(yè)前后管理制度
- 輸血流程培訓(xùn)試題
- 消化內(nèi)科診療指南和技術(shù)操作規(guī)范
- 2025-2030方塊地毯行業(yè)市場(chǎng)現(xiàn)狀供需分析及重點(diǎn)企業(yè)投資評(píng)估規(guī)劃分析研究報(bào)告
- 小兒推拿(大全)課件
- 全身麻醉和睡眠
- 管廊安全培訓(xùn)課件圖片
- 科技與文化融合的傳播方式
- 基層武裝工作知識(shí)
- 生產(chǎn)異常處理方法及流程
- 廣東省廣州市越秀區(qū)2025年中考一模歷史模擬試題(含答案)
- 古典詩詞的藝術(shù)美與吟誦知到智慧樹章節(jié)測(cè)試課后答案2024年秋浙江廣廈建設(shè)職業(yè)技術(shù)大學(xué)
評(píng)論
0/150
提交評(píng)論