




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022北京陳經綸中學高一(上)期中數學(時間:滿分:150分)一、選擇題:本大題共10個小題,每小題5分,共50分.在每小題給出的四個選項中,有且只有一項是符合題目要求的.1.設全集U=2,3,4,5,若集合M,則()A.2MB.3MC.4MD.5M2.若實數a,,cR且ab,則下列不等式恒成立的是()aA.a2b2B.acbcC.1D.a?cb?cb13.全稱量詞命題“xR,x2?x+0”的否定是()411A.xR,C.xR,x2?x+0B.xR,x2?x+04141x2?x+0D.xR,x?x+0244(+)4.下列函數中,是奇函數且在區間上單調遞減的是()1y=?x2B.y=xC.yx?=1D.y=x3A.5.已知函數fx2?x,x0()=,若fa4,則a=(()=)x,x02A.4或?2B.4或2C.2或4D.2或2()()()6fx是定義在fx在fx在上的()f1最大值為”的()A.充分而不必要條件C.充分必要條件B.必要而不充分條件D.既不充分也不必要條件=()(()=7.已知函數yfx的圖象為折線OABff2()A3B.4C.5D61?x2()=8.函數fx的圖象可能是()x3A.B.C.D.9.德國著名數學家、解析數論的創始人狄利克雷,對函數論、三角級數論等都有重要貢獻.狄利克雷函數為有理數()=()的判斷錯DxDx.為無理數誤的是().(+)=()A.對任意有理數,DxtDx(())B.對任意實數x,DDx=1()C.Dx既不是奇函數也不是偶函數(+)=()+()D.存在實數x,,DxyDxDy()()?=()10知fx是定義域為Rffxx4f3)A3B.5C.7D9二、填空題:本大題共6個小題,每小題5分,共30分.2?.3的值是______.x()=12.函數fx上的定義域為______.x?1=?,B=2,3,若A13.己知集合Axxa0a的取值范圍為______.x2ax1在區間1的取值范圍是______.()=14.若函數fx+++)上單調遞增,則f(?)1x?115.若x1,則f(x)=4x+的最小值是______.16X是實數集Rx0a0xX0x?0a,稱x0為集合X的聚點,則在下列集合中:1nn+1*==,nN0為聚點的集①xxR,x0xZx0xx,nNxx*n合有______和______.三、解答題:本大題共5個小題,共70分.1712分)設全集U=R,集合A=x1x,B=x2x?4x?.(1;(2)若集合C=+,滿足Bx2xa0,求實數a的取值范圍.1814分)()=(?)(+)fxax2x1己知函數(Ⅰ)當(Ⅱ)當a=1時,求fx()0,2在上的最值;a0fx()0的解集.時,求關于的不等式x1914分)經觀測,某公路段在某時段內的車流量(千輛小時)與汽車的平均速度v和(千米小時)之間有如下關920vv+v+1600().v0系:y=2(1)在該時段內,當汽車的平均速度v為多少時車流量y最大?最大車流量為多少?(精確到0.01千輛)(2)為保證在該時段內車流量至少為10千輛小時,則汽車的平均速度應控制在什么范圍內?2015分)ax+bx+121?()=fx()=,且f11已知定義在上的奇函數.2(1,b的值;()()(2)判斷fx在0,1上的單調性,并用定義證明之;(?)+()ft1ft0.(3)解關于實數t的不等式2115分)已知集合S=2,3,A是SA中的任意兩個不同的元素,()?+yxy,若xy都不能整除xy,則稱集合A是S(1)分別判斷數集P=6,8與Q=7是否是集合S()?(2)證明:若A是SA中的任意兩個不同的元素,yxy,都有xy3;(3)求集合S的“好子集”A所含元素個數的最大值.參考答案卷Ⅰ(選擇題)一、選擇題(本題共計10小題,每題5分,共計50分)1B2D3B4C5B6A7C8A9C10B題號答案卷Ⅱ(非選擇題)二、填空題(本題共計6小題,每題5分,共計30分)題號11112131415816①和③)(?,4xx且x10答案16三、解答題(本題共計5小題,共計70分)17)由題意知A=?,Bx2x?4x?=,x1x3xx2=ABx1x3x或x36axx2x2x3=?=.則(2)C=x2x+a0=xx?,2由B知,BC,a?2,解得,a?4.2(+)所以,a的取值范圍是【分】2129418a=1時,fx()=(?)(+)=??=x2x1x2x2x??,x0,2.1212()()在區間上,fx單調遞減;在,2上,fx單調遞增.1194所以,當x=時,fx()=f2=?;2()=?()=?=()fx=0【f02f202x26又,,所以當時,()fx(?)(+)ax2x10,0(Ⅱ),即a=02x1?(+)0x?1,解集為(?,?);當當時,得,2a0(ax2x1?)(+)=0x=,x=1,2時,由,得1a22a?2?1?①②③時,,解集為aa222a0a=?2?1,解集為,?1時,;aa2時,=?1,解集為a19)因為c0,920v9201600v92092083所以y===11.08v2+v+16001600v++32v+3v1600當且僅當v=,即v=40時等號成立.v所以v=40千米小時,車流量最大,最大值為千輛8分】920v(2)據題意有:10,2v+v+16002v?89v+16000,化簡得(?)(?)即v25v640所以25v64.所以汽車的平均速度應控制在25v64()20)因為fx為奇函數?ax+bax+bx+12所以f(?x)=fx=?()=?(?x)2+1整理得?+b=??b解得b=0a1()==又因為f11+12解得a=1綜上所述,a=1,b=0【5()=f00求需檢驗,否則扣1(注:用()()(2)fx在0,1上單調遞增,證明如下:x,x(),且xx121212()?()=?f1f2x2+1x22+11()(21+)xx22+1?xx2===1(x2+)(?)+(x+)(?)(?)1xx12+1x221(?)x21x1x2xxx1221+1x22x1x2(x2+)+1221,x?x012x,2()又021即1?xx012()?()0fxfx12()()fx(3不等式在分】是奇函數,()fx(?)+()(?)?()=(?)ft1ftft,ft1ft0,即1上是增函數,()?fx又則在1t?1?t1,1解得0t.21所以,t的取值范圍是【分】221.解4?2=24+2=6,所以集合P不是集合S(1)由于整除由于4?1=3不能整除4+1=5,7?1=6不能整除7+1=8,7?4=3不能整除7+4=,所以集合Q是集合S4(2A是Sx?y1,()?=假設存在A中的任意兩個不同的元素x,yxy,使得xy2,則x與y同為奇數或同為偶數,從而x+y是偶數,此時,x?y=2能整除x+y,與A是“好子集”矛盾.()?故若A是SA中的任意兩個不同的元素,yxy,都有xy39分】(3)設集合Aa,a,a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金屬成形機床行業工業機器人應用與編程考核試卷
- 谷物真空包裝與保鮮技術優化應用考核試卷
- 軟木制品在醫療設備領域的應用考核試卷
- 如何評估嵌入式系統的安全性試題及答案
- 茶葉店品牌戰略規劃考核試卷
- 行政組織理論的評估指標與績效監控研究試題及答案
- 葡萄酒釀造過程中的釀造產業鏈優化與協同創新考核試卷
- 國網公司物資管理制度
- 工會會員會員管理制度
- 員工異地辦公管理制度
- 貸款貸款信用證授信協議書
- 人力資源經營分析報告
- 電競酒店行業分析
- 煉鋼廠五臺英格索蘭空壓機維保技術協議
- 人工智能倫理導論- 課件 3-人工智能倫理
- 4G5G 移動通信技術-LTE信令流程
- 江西省交通安全知識講座
- 【生鮮電商發展探究國內外文獻綜述1800字】
- 杭州城市發展與歷史沿革
- 訂購單模板(訂貨單模板)
- JY-T 0467-2015 初中體育器材設施配備標準
評論
0/150
提交評論