




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年山東省平原縣中考聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.下列計(jì)算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b22.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠ACD=30°,則∠BAD為()A.30° B.50° C.60° D.70°3.在平面直角坐標(biāo)系xOy中,四條拋物線如圖所示,其解析式中的二次項(xiàng)系數(shù)一定小于1的是()A.y1 B.y2 C.y3 D.y44.實(shí)數(shù)a、b在數(shù)軸上的對(duì)應(yīng)點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)<﹣1 B.a(chǎn)b>0 C.a(chǎn)﹣b<0 D.a(chǎn)+b<05.已知一個(gè)正n邊形的每個(gè)內(nèi)角為120°,則這個(gè)多邊形的對(duì)角線有()A.5條 B.6條 C.8條 D.9條6.甲骨文是我國(guó)的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對(duì)稱的是()A. B. C. D.7.已知拋物線的圖像與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn).給出下列結(jié)論:①當(dāng)?shù)臈l件下,無(wú)論取何值,點(diǎn)是一個(gè)定點(diǎn);②當(dāng)?shù)臈l件下,無(wú)論取何值,拋物線的對(duì)稱軸一定位于軸的左側(cè);③的最小值不大于;④若,則.其中正確的結(jié)論有()個(gè).A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)8.如圖,在圓O中,直徑AB平分弦CD于點(diǎn)E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長(zhǎng)是()A.2 B.4 C. D.29.已知一組數(shù)據(jù):12,5,9,5,14,下列說(shuō)法不正確的是()A.平均數(shù)是9 B.中位數(shù)是9 C.眾數(shù)是5 D.極差是510.如圖所示的幾何體的左視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知點(diǎn)(﹣1,m)、(2,n)在二次函數(shù)y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).12.已知拋物線y=-x2+mx+2-m,在自變量x的值滿足-1≤x≤2的情況下.若對(duì)應(yīng)的函數(shù)值y的最大值為6,則m的值為_(kāi)_________.13.若|a|=2016,則a=___________.14.如圖是矗立在高速公路水平地面上的交通警示牌,經(jīng)測(cè)量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_米.(結(jié)果精確到0.1米,參考數(shù)據(jù):2≈1.41,3≈1.73)15.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關(guān)系為_(kāi)_______.(填“>”或“<”)16.已知a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,則ba=_____.17.如圖,在矩形ABCD中,AB=4,AD=6,E是AB邊的中點(diǎn),F(xiàn)是線段BC邊上的動(dòng)點(diǎn),將△EBF沿EF所在直線折疊得到△EB′F,連接B′D,則B′D的最小值是______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠C=90°,E是BC上一點(diǎn),ED⊥AB,垂足為D.求證:△ABC∽△EBD.19.(5分)關(guān)于x的一元二次方程x2﹣x﹣(m+2)=0有兩個(gè)不相等的實(shí)數(shù)根.求m的取值范圍;若m為符合條件的最小整數(shù),求此方程的根.20.(8分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.21.(10分)問(wèn)題:將菱形的面積五等分.小紅發(fā)現(xiàn)只要將菱形周長(zhǎng)五等分,再將各分點(diǎn)與菱形的對(duì)角線交點(diǎn)連接即可解決問(wèn)題.如圖,點(diǎn)O是菱形ABCD的對(duì)角線交點(diǎn),AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請(qǐng)補(bǔ)充完整.(1)在AB邊上取點(diǎn)E,使AE=4,連接OA,OE;(2)在BC邊上取點(diǎn)F,使BF=______,連接OF;(3)在CD邊上取點(diǎn)G,使CG=______,連接OG;(4)在DA邊上取點(diǎn)H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.22.(10分)(14分)如圖,在平面直角坐標(biāo)系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點(diǎn)為A,與x軸的交點(diǎn)分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動(dòng)點(diǎn)E(t,0)過(guò)點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P、Q.(1)求拋物線的解析式;(2)當(dāng)0<t≤8時(shí),求△APC面積的最大值;(3)當(dāng)t>2時(shí),是否存在點(diǎn)P,使以A、P、Q為頂點(diǎn)的三角形與△AOB相似?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.23.(12分)我們知道中,如果,,那么當(dāng)時(shí),的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關(guān)系時(shí)四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時(shí),四邊形面積最大?并求出最大面積是多少?24.(14分)如圖,在平面直角坐標(biāo)中,點(diǎn)O是坐標(biāo)原點(diǎn),一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點(diǎn).(1)求直線AB的解析式;(2)根據(jù)圖象寫出當(dāng)y1>y2時(shí),x的取值范圍;(3)若點(diǎn)P在y軸上,求PA+PB的最小值.
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D2、C【解析】試題分析:連接BD,∵∠ACD=30°,∴∠ABD=30°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.故選C.考點(diǎn):圓周角定理3、A【解析】
由圖象的點(diǎn)的坐標(biāo),根據(jù)待定系數(shù)法求得解析式即可判定.【詳解】由圖象可知:拋物線y1的頂點(diǎn)為(-2,-2),與y軸的交點(diǎn)為(0,1),根據(jù)待定系數(shù)法求得y1=(x+2)2-2;拋物線y2的頂點(diǎn)為(0,-1),與x軸的一個(gè)交點(diǎn)為(1,0),根據(jù)待定系數(shù)法求得y2=x2-1;拋物線y3的頂點(diǎn)為(1,1),與y軸的交點(diǎn)為(0,2),根據(jù)待定系數(shù)法求得y3=(x-1)2+1;拋物線y4的頂點(diǎn)為(1,-3),與y軸的交點(diǎn)為(0,-1),根據(jù)待定系數(shù)法求得y4=2(x-1)2-3;綜上,解析式中的二次項(xiàng)系數(shù)一定小于1的是y1故選A.【點(diǎn)睛】本題考查了二次函數(shù)的圖象,二次函數(shù)的性質(zhì)以及待定系數(shù)法求二次函數(shù)的解析式,根據(jù)點(diǎn)的坐標(biāo)求得解析式是解題的關(guān)鍵.4、C【解析】
直接利用a,b在數(shù)軸上的位置,進(jìn)而分別對(duì)各個(gè)選項(xiàng)進(jìn)行分析得出答案.【詳解】選項(xiàng)A,從數(shù)軸上看出,a在﹣1與0之間,∴﹣1<a<0,故選項(xiàng)A不合題意;選項(xiàng)B,從數(shù)軸上看出,a在原點(diǎn)左側(cè),b在原點(diǎn)右側(cè),∴a<0,b>0,∴ab<0,故選項(xiàng)B不合題意;選項(xiàng)C,從數(shù)軸上看出,a在b的左側(cè),∴a<b,即a﹣b<0,故選項(xiàng)C符合題意;選項(xiàng)D,從數(shù)軸上看出,a在﹣1與0之間,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故選項(xiàng)D不合題意.故選:C.【點(diǎn)睛】本題考查數(shù)軸和有理數(shù)的四則運(yùn)算,解題的關(guān)鍵是掌握利用數(shù)軸表示有理數(shù)的大小.5、D【解析】
多邊形的每一個(gè)內(nèi)角都等于120°,則每個(gè)外角是60°,而任何多邊形的外角是360°,則求得多邊形的邊數(shù);再根據(jù)多邊形一個(gè)頂點(diǎn)出發(fā)的對(duì)角線=n﹣3,即可求得對(duì)角線的條數(shù).【詳解】解:∵多邊形的每一個(gè)內(nèi)角都等于120°,∴每個(gè)外角是60度,則多邊形的邊數(shù)為360°÷60°=6,則該多邊形有6個(gè)頂點(diǎn),則此多邊形從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線共有6﹣3=3條.∴這個(gè)多邊形的對(duì)角線有(6×3)=9條,故選:D.【點(diǎn)睛】本題主要考查多邊形內(nèi)角和與外角和及多邊形對(duì)角線,掌握求多邊形邊數(shù)的方法是解本題的關(guān)鍵.6、D【解析】試題分析:A.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.考點(diǎn):軸對(duì)稱圖形.7、C【解析】
①利用拋物線兩點(diǎn)式方程進(jìn)行判斷;
②根據(jù)根的判別式來(lái)確定a的取值范圍,然后根據(jù)對(duì)稱軸方程進(jìn)行計(jì)算;
③利用頂點(diǎn)坐標(biāo)公式進(jìn)行解答;
④利用兩點(diǎn)間的距離公式進(jìn)行解答.【詳解】①y=ax1+(1-a)x-1=(x-1)(ax+1).則該拋物線恒過(guò)點(diǎn)A(1,0).故①正確;
②∵y=ax1+(1-a)x-1(a>0)的圖象與x軸有1個(gè)交點(diǎn),
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴該拋物線的對(duì)稱軸為:x=,無(wú)法判定的正負(fù).
故②不一定正確;
③根據(jù)拋物線與y軸交于(0,-1)可知,y的最小值不大于-1,故③正確;
④∵A(1,0),B(-,0),C(0,-1),
∴當(dāng)AB=AC時(shí),,解得:a=,故④正確.
綜上所述,正確的結(jié)論有3個(gè).
故選C.【點(diǎn)睛】考查了二次函數(shù)與x軸的交點(diǎn)及其性質(zhì).(1).拋物線是軸對(duì)稱圖形.對(duì)稱軸為直線x=-,對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P;特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0);(1).拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/1a,(4ac-b1)/4a),當(dāng)-=0,〔即b=0〕時(shí),P在y軸上;當(dāng)Δ=b1-4ac=0時(shí),P在x軸上;(3).二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小;當(dāng)a>0時(shí),拋物線開(kāi)口向上;當(dāng)a<0時(shí),拋物線開(kāi)口向下;|a|越大,則拋物線的開(kāi)口越小.(4).一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置;當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;(5).常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn);拋物線與y軸交于(0,c);(6).拋物線與x軸交點(diǎn)個(gè)數(shù)Δ=b1-4ac>0時(shí),拋物線與x軸有1個(gè)交點(diǎn);Δ=b1-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);Δ=b1-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn).X的取值是虛數(shù)(x=-b±√b1-4ac乘上虛數(shù)i,整個(gè)式子除以1a);當(dāng)a>0時(shí),函數(shù)在x=-b/1a處取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x<-b/1a}上是減函數(shù),在{x|x>-b/1a}上是增函數(shù);拋物線的開(kāi)口向上;函數(shù)的值域是{y|y≥4ac-b1/4a}相反不變;當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax1+c(a≠0).8、D【解析】
連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點(diǎn)睛】此題主要考查圓內(nèi)的綜合問(wèn)題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.9、D【解析】分別計(jì)算該組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)及極差后即可得到正確的答案平均數(shù)為(12+5+9+5+14)÷5=9,故選項(xiàng)A正確;重新排列為5,5,9,12,14,∴中位數(shù)為9,故選項(xiàng)B正確;5出現(xiàn)了2次,最多,∴眾數(shù)是5,故選項(xiàng)C正確;極差為:14﹣5=9,故選項(xiàng)D錯(cuò)誤.故選D10、A【解析】本題考查的是三視圖.左視圖可以看到圖形的排和每排上最多有幾層.所以選擇A.二、填空題(共7小題,每小題3分,滿分21分)11、>;【解析】
∵=a(x-1)2-a-1,∴拋物線對(duì)稱軸為:x=1,由拋物線的對(duì)稱性,點(diǎn)(-1,m)、(2,n)在二次函數(shù)的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>12、m=8或-【解析】
求出拋物線的對(duì)稱軸x=-b2a=【詳解】拋物線的對(duì)稱軸x=-b當(dāng)m2<-1,即m<-2時(shí),拋物線在-1≤x≤2時(shí),y隨x的增大而減小,在x=-1時(shí)取得最大值,即y=--1當(dāng)-1≤m2≤2,即-2≤m≤4時(shí),拋物線在-1≤x≤2時(shí),在x=當(dāng)m2>2,即m>4時(shí),拋物線在-1≤x≤2時(shí),y隨x的增大而增大,在x=2時(shí)取得最大值,即y=-2綜上所述,m的值為8或-故答案為:8或-【點(diǎn)睛】考查二次函數(shù)的圖象與性質(zhì),注意分類討論,不要漏解.13、±1【解析】試題分析:根據(jù)零指數(shù)冪的性質(zhì)(),可知|a|=1,座椅可知a=±1.14、2.9【解析】試題分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考點(diǎn):解直角三角形.15、>【解析】
觀察平均氣溫統(tǒng)計(jì)圖可知:乙地的平均氣溫比較穩(wěn)定,波動(dòng)小;波動(dòng)越小越穩(wěn)定.【詳解】解:觀察平均氣溫統(tǒng)計(jì)圖可知:乙地的平均氣溫比較穩(wěn)定,波動(dòng)小;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【點(diǎn)睛】本題考查方差的意義.方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定.反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.16、1【解析】
根據(jù)已知a<<b,結(jié)合a、b是兩個(gè)連續(xù)的整數(shù)可得a、b的值,即可求解.【詳解】解:∵a,b為兩個(gè)連續(xù)的整數(shù),且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點(diǎn)睛】此題考查的是如何根據(jù)無(wú)理數(shù)的范圍確定兩個(gè)有理數(shù)的值,題中根據(jù)的取值范圍,可以很容易得到其相鄰兩個(gè)整數(shù),再結(jié)合已知條件即可確定a、b的值,17、1﹣1【解析】
如圖所示點(diǎn)B′在以E為圓心EA為半徑的圓上運(yùn)動(dòng),當(dāng)D、B′、E共線時(shí)時(shí),此時(shí)B′D的值最小,根據(jù)勾股定理求出DE,根據(jù)折疊的性質(zhì)可知B′E=BE=1,即可求出B′D.【詳解】如圖所示點(diǎn)B′在以E為圓心EA為半徑的圓上運(yùn)動(dòng),當(dāng)D、B′、E共線時(shí)時(shí),此時(shí)B′D的值最小,根據(jù)折疊的性質(zhì),△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB邊的中點(diǎn),AB=4,∴AE=EB′=1,∵AD=6,∴DE=,∴B′D=1﹣1.【點(diǎn)睛】本題考查了折疊的性質(zhì)、全等三角形的判定與性質(zhì)、兩點(diǎn)之間線段最短的綜合運(yùn)用;確定點(diǎn)B′在何位置時(shí),B′D的值最小是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、證明見(jiàn)解析【解析】試題分析:先根據(jù)垂直的定義得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根據(jù)有兩個(gè)角相等的兩三角形相似即可得出結(jié)論.試題解析:解:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴∽.點(diǎn)睛:本題考查的是相似三角形的判定,熟知有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似是解答此題的關(guān)鍵.19、(1)m>;(2)x1=0,x2=1.【解析】
解答本題的關(guān)鍵是是掌握好一元二次方程的根的判別式.(1)求出△=5+4m>0即可求出m的取值范圍;(2)因?yàn)閙=﹣1為符合條件的最小整數(shù),把m=﹣1代入原方程求解即可.【詳解】解:(1)△=1+4(m+2)=9+4m>0∴.(2)∵為符合條件的最小整數(shù),∴m=﹣2.∴原方程變?yōu)椤鄕1=0,x2=1.考點(diǎn):1.解一元二次方程;2.根的判別式.20、(1)見(jiàn)解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結(jié)論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.21、(1)見(jiàn)解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】
利用菱形四條邊相等,分別在四邊上進(jìn)行截取和連接,得出AE=EB+BF=FC+CG+GD+DH=HA,進(jìn)一步求得S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.即可.【詳解】(1)在AB邊上取點(diǎn)E,使AE=4,連接OA,OE;(2)在BC邊上取點(diǎn)F,使BF=3,連接OF;(3)在CD邊上取點(diǎn)G,使CG=2,連接OG;(4)在DA邊上取點(diǎn)H,使DH=1,連接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.故答案為:3,2,1;EB、BF;FC、CG;GD、DH;HA.【點(diǎn)睛】此題考查菱形的性質(zhì),熟練掌握菱形的四條邊相等,對(duì)角線互相垂直是解題的關(guān)鍵.22、(1)y=14x2-2x+3【解析】試題分析:(1)首先利用根與系數(shù)的關(guān)系得出:x1+x2=8試題解析:解:(1)由題意知x1、x2是方程mx2﹣8mx+4m+2=0的兩根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)則4m﹣16m+4m+2=0,解得:m=,∴該拋物線解析式為:y=;.(2)可求得A(0,3)設(shè)直線AC的解析式為:y=kx+b,∵∴∴直線AC的解析式為:y=﹣x+3,要構(gòu)成△APC,顯然t≠6,分兩種情況討論:當(dāng)0<t<6時(shí),設(shè)直線l與AC交點(diǎn)為F,則:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此時(shí)最大值為:,②當(dāng)6≤t≤8時(shí),設(shè)直線l與AC交點(diǎn)為M,則:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,當(dāng)t=8時(shí),取最大值,最大值為:12,綜上可知,當(dāng)0<t≤8時(shí),△APC面積的最大值為12;(3)如圖,連接AB,則△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①當(dāng)2<t≤6時(shí),AQ=t,PQ=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=2(舍),②當(dāng)t>6時(shí),AQ′=t,PQ′=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考點(diǎn):二次
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年甘肅省武威市-嘉峪關(guān)市-臨夏州中考?xì)v史試題(含答案)
- 工業(yè)園區(qū)的物流配送規(guī)劃優(yōu)化實(shí)踐分享
- 工業(yè)廢水處理技術(shù)與工藝研究
- 工業(yè)控制系統(tǒng)中智能傳感器的應(yīng)用
- 工業(yè)機(jī)器人結(jié)構(gòu)設(shè)計(jì)與應(yīng)用
- 工業(yè)自動(dòng)化中新材料的作用
- 工業(yè)自動(dòng)化中電池技術(shù)的運(yùn)用
- 工業(yè)視頻監(jiān)控中的智能識(shí)別技術(shù)應(yīng)用
- 工業(yè)節(jié)能與余熱回收利用
- 工業(yè)生產(chǎn)與環(huán)保的和諧共生
- 含參數(shù)的一元一次不等式組
- 蘭溪市排水防澇提升雨污管網(wǎng)修復(fù)改造初步設(shè)計(jì)文本
- 旅游景區(qū)規(guī)劃設(shè)計(jì)案例
- 鋼琴課件教學(xué)課件
- 國(guó)家開(kāi)放大學(xué)《四史通講》形考作業(yè)1-3+大作業(yè)試卷ABC答案
- 電氣施工管理
- 【MOOC】天文探秘-南京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- FES手冊(cè)完整版本
- 云南省保山市(2024年-2025年小學(xué)六年級(jí)語(yǔ)文)部編版小升初模擬((上下)學(xué)期)試卷及答案
- 2024年西藏初中學(xué)業(yè)水平考試地理卷試題真題(含答案解析)
- 2024年廣西職業(yè)院校技能大賽高職組《供應(yīng)鏈管理》賽項(xiàng)規(guī)程
評(píng)論
0/150
提交評(píng)論