




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆山東省菏澤市定陶區中考數學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.二次函數y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.2.拒絕“餐桌浪費”,刻不容緩.節約一粒米的帳:一個人一日三餐少浪費一粒米,全國一年就可以節省斤,這些糧食可供9萬人吃一年.“”這個數據用科學記數法表示為()A. B. C. D..3.某小組7名同學在一周內參加家務勞動的時間如下表所示,關于“勞動時間”的這組數據,以下說法正確的是()勞動時間(小時)33.544.5人數1132A.中位數是4,眾數是4 B.中位數是3.5,眾數是4C.平均數是3.5,眾數是4 D.平均數是4,眾數是3.54.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°5.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個6.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、67.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm8.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐9.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變為,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆10.加工爆米花時,爆開且不糊的粒數占加工總粒數的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數關系p=at2+bt+c(a,b,c是常數),如圖記錄了三次實驗的數據.根據上述函數模型和實驗數據,可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:3x2-6x+3=__.12.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內部的點F處.若∠CBF=25°,則∠FDA的度數為_________.13.2017年5月5日我國自主研發的大型飛機C919成功首飛,如圖給出了一種機翼的示意圖,用含有m、n的式子表示AB的長為______.14.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.15.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結論有_____.(填寫所有正確結論的序號)16.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點A的切線交BD延長線于點C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長為_____.17.對于任意實數m、n,定義一種運算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運算,例如:3※5=3×5﹣3﹣5+3=1.請根據上述定義解決問題:若a<2※x<7,且解集中有兩個整數解,則a的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區教育部門隨機調查了若干名中學生,根據調查結果制作統計圖①和圖②,請根據相關信息,解答下列問題:(1)本次接受隨機抽樣調查的中學生人數為_______,圖①中m的值是_____;(2)求本次調查獲取的樣本數據的平均數、眾數和中位數;(3)根據統計數據,估計該地區250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數.19.(5分)如圖,一次函數的圖象與反比例函數(為常數,且)的圖象交于A(1,a)、B兩點.求反比例函數的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.20.(8分)如圖,在直角三角形ABC中,(1)過點A作AB的垂線與∠B的平分線相交于點D(要求:尺規作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.21.(10分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.22.(10分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米).23.(12分)如圖所示,平行四邊形形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E,F.(1)求證:四邊形BEDF是平行四邊形;(2)請添加一個條件使四邊形BEDF為菱形.24.(14分)在正方形網格中,每個小正方形的邊長均為1個單位長度,△ABC的三個頂點的位置如圖所示.現將△ABC平移,使點A變換為點D,點E、F分別是B、C的對應點.請畫出平移后的△DEF.連接AD、CF,則這兩條線段之間的關系是________.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據此得最小值為1m為負數,最大值為1n為正數.將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.2、C【解析】
用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【詳解】32400000=3.24×107元.
故選C.【點睛】此題主要考查了用科學記數法表示較大的數,一般形式為a×10n,其中1≤|a|<10,確定a與n的值是解題的關鍵.3、A【解析】
根據眾數和中位數的概念求解.【詳解】這組數據中4出現的次數最多,眾數為4,∵共有7個人,∴第4個人的勞動時間為中位數,所以中位數為4,故選A.【點睛】本題考查眾數與中位數的意義,一組數據中出現次數最多的數據叫做眾數;中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會出錯.4、A【解析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內角和定理,列方程求解.5、C【解析】
根據有理數的乘方及解一元二次方程-直接開平方法得出兩個有關m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數的乘方及解一元二次方程-直接開平方法,解題的關鍵是熟練的掌握有理數的乘方及解一元二次方程-直接開平方法.6、D【解析】
5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.7、A【解析】
過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點睛】考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.8、C【解析】試題解析:根據主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據俯視圖是圓可判斷出該幾何體為圓柱.故選C.9、B【解析】試題解析:由題意得,解得:.故選B.10、C【解析】
根據題目數據求出函數解析式,根據二次函數的性質可得.【詳解】根據題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數的應用,熟練掌握性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3(x-1)2【解析】
先提取公因式3,再對余下的多項式利用完全平方公式繼續分解.【詳解】.故答案是:3(x-1)2.【點睛】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.12、50°【解析】
延長BF交CD于G,根據折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數.【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.13、【解析】
過點C作CE⊥CF延長BA交CE于點E,先求得DF的長,可得到AE的長,最后可求得AB的長.【詳解】解:延長BA交CE于點E,設CF⊥BF于點F,如圖所示.在Rt△BDF中,BF=n,∠DBF=30°,∴.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴.故答案為:.【點睛】此題考查解直角三角形的應用,解題的關鍵在于做輔助線.14、3【解析】
以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,
,
∵△ACD,△ABE是等邊三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若點E,點B,點C不共線時,EC<BC+BE;
若點E,點B,點C共線時,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值為3,即BD的最大值為3.
故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.15、①②④.【解析】
根據菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質一一判斷即可.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【點睛】此題考查平行四邊形的性質、菱形的判定和性質、平行線分線段成比例定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數解決問題.16、【解析】
連接OA,所以∠OAC=90°,因為AB=AC,所以∠B=∠C,根據圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點睛】本題主要考查了圓周角定理,角的轉換,以及在直角三角形中的三角函數的運用,解本題的要點在于求出OA的值,從而利用直角三角形的三角函數的運用求出答案.17、【解析】
解:根據題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數解,∴a的范圍為,故答案為.【點睛】本題考查一元一次不等式組的整數解,準確理解題意正確計算是本題的解題關鍵.三、解答題(共7小題,滿分69分)18、(1)250、12;(2)平均數:1.38h;眾數:1.5h;中位數:1.5h;(3)160000人;【解析】
(1)根據題意,本次接受調查的學生總人數為各個金額人數之和,用總概率減去其他金額的概率即可求得m值.(2)平均數為一組數據中所有數據之和再除以這組數據的個數;眾數是在一組數據中出現次數最多的數;中位數是將一組數據按大小順序排列,處于最中間位置的一個數據,或是最中間兩個數據的平均數,據此求解即可.(3)根據樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數”的概率乘以全??側藬登蠼饧纯桑驹斀狻浚?)本次接受隨機抽樣調查的中學生人數為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數為=1.38(h),眾數為1.5h,中位數為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數約為250000×=160000人.【點睛】本題主要考查數據的收集、處理以及統計圖表.19、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數圖象上,結合一次函數解析式可求出點A的坐標,再由點A的坐標利用待定系數法即可求出反比例函數解析式,聯立兩函數解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結合點B的坐標找出點D的坐標,設直線AD的解析式為y=mx+n,結合點A、D的坐標利用待定系數法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結合三角形的面積公式即可得出結論.試題解析:(1)把點A(1,a)代入一次函數y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數y=,得:3=k,∴反比例函數的表達式y=,聯立兩個函數關系式成方程組得:,解得:,或,∴點B的坐標為(3,1).(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.∵點B、D關于x軸對稱,點B的坐標為(3,1),∴點D的坐標為(3,-1).設直線AD的解析式為y=mx+n,把A,D兩點代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點P的坐標為(,0).S△PAB=S△ABD-S△PBD=BD?(xB-xA)-BD?(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考點:1.反比例函數與一次函數的交點問題;2.待定系數法求一次函數解析式;3.軸對稱-最短路線問題.20、(1)見解析(2)【解析】
(1)分別作∠ABC的平分線和過點A作AB的垂線,它們的交點為D點;(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關系得到AD=AB=,然后利用三角形面積公式求解.【詳解】解:(1)如圖,點D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.21、(1)見解析;(2)見解析.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 心理疏導在青少年學習中的價值
- 楊凌職業技術學院《產品包裝攝影》2023-2024學年第一學期期末試卷
- 桐城師范高等??茖W?!锻饪茖W(Ⅰ)》2023-2024學年第一學期期末試卷
- 廣州應用科技學院《當代國際關系》2023-2024學年第一學期期末試卷
- 2025版金融行業從業人員年度聘用協議
- 2025版車輛保養與汽車售后服務體系建設合同
- 二零二五年金融科技公司股權轉讓及業務整合協議
- 二零二五年度MyOracleSupport系統安全防護合同
- 2025版廠房場地租賃合同智能化升級范本
- 二零二五年網絡小說保密協議書
- 高壓電力電纜保護方案
- DBJ33T 1271-2022 建筑施工高處作業吊籃安全技術規程
- 古詩《樂游原》課件
- 規劃設計框架合同模板
- 安全心理學-應激及事故創傷的心理救援
- 生命安全與救援學習通超星期末考試答案章節答案2024年
- 《人行自動門安全要求》標準
- 礦坑涌水量預測計算規程
- 勞動教育概論智慧樹知到期末考試答案章節答案2024年哈爾濱工業大學
- 長租公寓計劃書
- 《正確對等得與失》課件
評論
0/150
提交評論