2022屆廣東省深圳市平湖中學中考數學模擬預測題含解析_第1頁
2022屆廣東省深圳市平湖中學中考數學模擬預測題含解析_第2頁
2022屆廣東省深圳市平湖中學中考數學模擬預測題含解析_第3頁
2022屆廣東省深圳市平湖中學中考數學模擬預測題含解析_第4頁
2022屆廣東省深圳市平湖中學中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆廣東省深圳市平湖中學中考數學模擬預測題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.規定:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現有下列結論:①方程x2+2x﹣8=0是倍根方程;②若關于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);④若點(m,n)在反比例函數y=的圖象上,則關于x的方程mx2+5x+n=0是倍根方程.上述結論中正確的有(

)A.①② B.③④ C.②③ D.②④2.若關于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>53.某車間有27名工人,生產某種由一個螺栓套兩個螺母的產品,每人每天生產螺母16個或螺栓22個,若分配x名工人生產螺栓,其他工人生產螺母,恰好使每天生產的螺栓和螺母配套,則下面所列方程中正確的是()A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)4.一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率為().A. B. C. D.5.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個6.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④7.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣8.若一元二次方程x2﹣2x+m=0有兩個不相同的實數根,則實數m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<19.如圖,在△ABC中,∠CAB=75°,在同一平面內,將△ABC繞點A逆時針旋轉到△AB′C′的位置,使得CC′∥AB,則∠CAC′為()A.30° B.35° C.40° D.50°10.如圖,內接于,若,則A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發現有60次摸到黑球,請你估計這個袋中紅球約有_____個.12.一個兩位數,個位數字比十位數字大4,且個位數字與十位數字的和為10,則這個兩位數為_______.13.已知扇形的圓心角為120°,弧長為6π,則扇形的面積是_____.14.計算:2﹣1+=_____.15.分解因式:x2y﹣xy2=_____.16.如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2018的坐標為_____.17.如圖,已知,D、E分別是邊AB、AC上的點,且設,,那么______用向量、表示三、解答題(共7小題,滿分69分)18.(10分)請根據圖中提供的信息,回答下列問題:一個水瓶與一個水杯分別是多少元?甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規定:這兩種商品都打八折;乙商場規定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數)個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)19.(5分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.20.(8分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO21.(10分)先化簡,再求值:(﹣1)÷,其中x=1.22.(10分)甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人間的距離y(米)與甲出發的時間x(分)之間的關系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達終點?23.(12分)拋物線與x軸交于A,B兩點(點A在點B的左邊),與y軸正半軸交于點C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點,連接AC,PC,若∠PCO=3∠ACO,求點P的橫坐標;(2)如圖2,D為x軸下方拋物線上一點,連DA,DB,若∠BDA+2∠BAD=90°,求點D的縱坐標.24.(14分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;(2)求證:(3)若BC=AB,求tan∠CDF的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:①通過解方程得到該方程的根,結合“倍根方程”的定義進行判斷;②設=2,得到?=2=2,得到當=1時,=2,當=-1時,=-2,于是得到結論;③根據“倍根方程”的定義即可得到結論;④若點(m,n)在反比例函數y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關于x的方程+ax+2=0是倍根方程,∴設=2,∴?=2=2,∴=±1,當=1時,=2,當=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數圖象上點的坐標特征,根與系數的關系,正確的理解倍根方程的定義是解題的關鍵.2、B【解析】試題解析:∵關于x的一元二次方程方程有兩個不相等的實數根,∴,即,解得:k<5且k≠1.故選B.3、D【解析】設分配x名工人生產螺栓,則(27-x)人生產螺母,根據一個螺栓要配兩個螺母可得方程2×22x=16(27-x),故選D.4、B【解析】

朝上的數字為偶數的有3種可能,再根據概率公式即可計算.【詳解】依題意得P(朝上一面的數字是偶數)=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.5、B【解析】

根據軸對稱圖形和中心對稱圖形的定義對各個圖形進行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180°后兩部分重合.6、B【解析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質,等高模型、三邊關系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關系得,O、D、H三點共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【點睛】本題考查了相似三角形的判定與性質,全等三角形的判定與性質,正方形的性質,解直角三角形,解題的關鍵是掌握它們的性質進行解題.7、C【解析】試題分析:找出一元二次方程的系數a,b及c的值,利用根與系數的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數的關系8、D【解析】分析:根據方程的系數結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數m的取值范圍.詳解:∵方程有兩個不相同的實數根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.9、A【解析】

根據旋轉的性質可得AC=AC,∠BAC=∠BAC',再根據兩直線平行,內錯角相等求出∠ACC=∠CAB,然后利用等腰三角形兩底角相等求出∠CAC,再求出∠BAB=∠CAC,從而得解【詳解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′為對應點,點A為旋轉中心,∴AC=AC′,即△ACC′為等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故選A.【點睛】此題考查等腰三角形的性質,旋轉的性質和平行線的性質,運用好旋轉的性質是解題關鍵10、B【解析】

根據圓周角定理求出,根據三角形內角和定理計算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點睛】本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質、三角形內角和定理是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據概率公式計算這個口袋中黑球的數量,繼而得出答案.【詳解】因為共摸了200次球,發現有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.12、37【解析】

根據題意列出一元一次方程即可求解.【詳解】解:設十位上的數字為a,則個位上的數為(a+4),依題意得:a+a+4=10,解得:a=3,∴這個兩位數為:37【點睛】本題考查了一元一次方程的實際應用,屬于簡單題,找到等量關系是解題關鍵.13、27π【解析】試題分析:設扇形的半徑為r.則,解得r=9,∴扇形的面積==27π.故答案為27π.考點:扇形面積的計算.14、【解析】根據負整指數冪的性質和二次根式的性質,可知=.故答案為.15、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).16、(6054,2)【解析】分析:分析題意和圖形可知,點B1、B3、B5、……在x軸上,點B2、B4、B6、……在第一象限內,由已知易得AB=,結合旋轉的性質可得OA+AB1+B1C2=6,從而可得點B2的坐標為(6,2),同理可得點B4的坐標為(12,2),即點B2相當于是由點B向右平移6個單位得到的,點B4相當于是由點B2向右平移6個單位得到的,由此即可推導得到點B2018的坐標.詳解:∵在△AOB中,∠AOB=90°,OA=,OB=2,∴AB=,∴由旋轉的性質可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,∴點B2的坐標為(6,2),同理可得點B4的坐標為(12,2),由此可得點B2相當于是由點B向右平移6個單位得到的,點B4相當于是由點B2向右平移6個單位得到,∴點B2018相當于是由點B向右平移了:個單位得到的,∴點B2018的坐標為(6054,2).故答案為:(6054,2).點睛:讀懂題意,結合旋轉的性質求出點B2和點B4的坐標,分析找到其中點B的坐標的變化規律,是正確解答本題的關鍵.17、【解析】

在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質以及向量的運算.三、解答題(共7小題,滿分69分)18、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】

(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數,∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.6n<0,即160+0.64n<120+8n,∴選擇甲商場購買更合算.【點睛】此題主要考查不等式的應用,解題的關鍵是根據題意找到等量關系與不等關系進行列式求解.19、(1)詳見解析;(2)【解析】

(1)根據題意平分可得,從而證明即可解答(2)由(1)可知,再根據四邊形是平行四邊形可得,過點作延長線于點,再根據勾股定理即可解答【詳解】(1)證明:平分又又(2)四邊形是平行四邊形,為等邊三角形過點作延長線于點.在中,【點睛】此題考查三角形全等的判定與性質,勾股定理,平行四邊形的性質,解題關鍵在于作好輔助線20、3【解析】試題分析:本題考查了相似三角形的判定與性質,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO21、-1.【解析】

先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【詳解】解:原式=,=,=,=﹣,當x=1時,原式=﹣=﹣1.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則22、(1);(2)80米/分;(3)6分鐘【解析】

(1)根據圖示,設線段AB的表達式為:y=kx+b,把把(4,240),(16,0)代入得到關于k,b的二元一次方程組,解之,即可得到答案,

(2)根據線段OA,求出甲的速度,根據圖示可知:乙在點B處追上甲,根據速度=路程÷時間,計算求值即可,

(3)根據圖示,求出二者相遇時與出發點的距離,進而求出與終點的距離,結合(2)的結果,分別計算出相遇后,到達終點甲和乙所用的時間,二者的時間差即可所求答案.【詳解】(1)根據題意得:

設線段AB的表達式為:y=kx+b(4≤x≤16),

把(4,240),(16,0)代入得:,

解得:,

即線段AB的表達式為:y=-20x+320(4≤x≤16),

(2)又線段OA可知:甲的速度為:=60(米/分),

乙的步行速度為:=80(米/分),

答:乙的步行速度為80米/分,

(3)在B處甲乙相遇時,與出發點的距離為:240+(16-4)×60=960(米),

與終點的距離為:2400-960=1440(米),

相遇后,到達終點甲所用的時間為:=24(分),

相遇后,到達終點乙所用的時間為:=18(分),

24-18=6(分),

答:乙比甲早6分鐘到達終點.【點睛】本題考查了一次函數的應用,正確掌握分析函數圖象是解題的關鍵.23、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標代入解析式,解方程組即可得到結論;②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進而得到.設EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標,進而求出CE的直線解析式,聯立解方程組即可得到結論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點E,在x軸上取點D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設EN=3x,則CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論