浙江省溫州市十五校聯合體2024-2025學年高考押題卷數學試題(2)含解析_第1頁
浙江省溫州市十五校聯合體2024-2025學年高考押題卷數學試題(2)含解析_第2頁
浙江省溫州市十五校聯合體2024-2025學年高考押題卷數學試題(2)含解析_第3頁
浙江省溫州市十五校聯合體2024-2025學年高考押題卷數學試題(2)含解析_第4頁
浙江省溫州市十五校聯合體2024-2025學年高考押題卷數學試題(2)含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省溫州市十五校聯合體2024-2025學年高考押題卷數學試題(2)注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.2.設,若函數在區間上有三個零點,則實數的取值范圍是()A. B. C. D.3.已知復數z滿足(i為虛數單位),則z的虛部為()A. B. C.1 D.4.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.已知函數則函數的圖象的對稱軸方程為()A. B.C. D.6.函數()的圖像可以是()A. B.C. D.7.的展開式中,含項的系數為()A. B. C. D.8.在直角中,,,,若,則()A. B. C. D.9.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.已知函數,,的零點分別為,,,則()A. B.C. D.11.設集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}12.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知均為非負實數,且,則的取值范圍為______.14.已知等差數列的前n項和為Sn,若,則____.15.隨著國力的發展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學生的體質與健康現狀,合理制定學校體育衛生工作發展規劃,某市進行了一次全市高中男生身高統計調查,數據顯示全市30000名高中男生的身高(單位:)服從正態分布,且,那么該市身高高于的高中男生人數大約為__________.16.某學校高一、高二、高三年級的學生人數之比為,現按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設為實數,已知函數,.(1)當時,求函數的單調區間:(2)設為實數,若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(,)有兩個相異的零點,求的取值范圍.18.(12分)設函數.(1)當時,解不等式;(2)設,且當時,不等式有解,求實數的取值范圍.19.(12分)已知三點在拋物線上.(Ⅰ)當點的坐標為時,若直線過點,求此時直線與直線的斜率之積;(Ⅱ)當,且時,求面積的最小值.20.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.21.(12分)已知.(1)若,求函數的單調區間;(2)若不等式恒成立,求實數的取值范圍.22.(10分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.2.D【解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.3.D【解析】

根據復數z滿足,利用復數的除法求得,再根據復數的概念求解.【詳解】因為復數z滿足,所以,所以z的虛部為.故選:D.本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.4.C【解析】

根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.5.C【解析】

,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數的對稱性的問題,在處理余弦型函數的性質時,一般采用整體法,結合三角函數的性質,是一道容易題.6.B【解析】

根據,可排除,然后采用導數,判斷原函數的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數在單調遞減在單調遞增,故選:B本題考查函數的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.7.B【解析】

在二項展開式的通項公式中,令的冪指數等于,求出的值,即可求得含項的系數.【詳解】的展開式通項為,令,得,可得含項的系數為.故選:B.本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.8.C【解析】

在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,

若,則故選C.本題考查向量的加減運算和數量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.9.D【解析】

利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.10.C【解析】

轉化函數,,的零點為與,,的交點,數形結合,即得解.【詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.11.C【解析】

先求集合A,再用列舉法表示出集合B,再根據交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.本題主要考查集合的交集運算,屬于基礎題.12.D【解析】

如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質可以得到,,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數的最值即可求解.【詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數的對稱軸為,所以當時函數有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數的對稱軸為,所以當時,函數有最小值為,即,當,且時取等號,所以.故答案為:本題考查基本不等式與二次函數求最值相結合求代數式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.14.【解析】

由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.本題主要考查等差數列前n項和的性質,相對不難.15.3000【解析】

根據正態曲線的對稱性求出,進而可求出身高高于的高中男生人數.【詳解】解:全市30000名高中男生的身高(單位:)服從正態分布,且,則,該市身高高于的高中男生人數大約為.故答案為:.本題考查正態曲線的對稱性的應用,是基礎題.16.【解析】

根據分層抽樣的定義建立比例關系即可得到結論.【詳解】設抽取的樣本為,則由題意得,解得.故答案為:本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)函數單調減區間為;單調增區間為.(2)(3)【解析】

(1)據導數和函數單調性的關系即可求出;(2)分離參數,可得對任意的及任意的恒成立,構造函數,利用導數求出函數的最值即可求出的范圍;(3)先求導,再分類討論,根據導數和函數單調性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數單調減區間為;單調增區間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數在上單調遞減,在上單調遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數在上單調遞增,所以函數至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數的值域為.所以,存在,使得,即,①且當時,,所以函數在上單調遞增,在上單調遞減.因為函數有兩個零點,,所以.②設,,則,所以函數在單調遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數在上單調遞減,所以,即.當時,(ⅰ)由于,所以得,又因為,且函數在上單調遞減,函數的圖象在上不間斷,所以函數在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數在上也恰有一個零點.綜上,.本題考查含參數的導數的單調性,利用導數求不等式恒成立問題,以及考查函數零點問題,考查學生的計算能力,是綜合性較強的題.18.(1);(2).【解析】

(1)通過分類討論去掉絕對值符號,進而解不等式組求得結果;(2)將不等式整理為,根據能成立思想可知,由此構造不等式求得結果.【詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數的取值范圍是.本題考查絕對值不等式的求解、根據不等式有解求解參數范圍的問題;關鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉化為所求參數與函數最值之間的比較問題.19.(Ⅰ);(Ⅱ)16.【解析】

(Ⅰ)設出直線的方程并代入拋物線方程,利用韋達定理以及斜率公式,變形可得;(Ⅱ)利用,,的斜率,求得的坐標,,再用基本不等式求得的最小值,從而可得三角形的面積的最小值.【詳解】解:(Ⅰ)設直線的方程為.聯立方程組,得,,故,.所以;(Ⅱ)不妨設的三個頂點中的兩個頂點在軸右側(包括軸),設,,,的斜率為,又,則,①因為,所以②由①②得,,(且)從而當且僅當時取“”號,從而,所以面積的最小值為.本題考查了直線與拋物線的綜合,屬于中檔題.20.(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】

(Ⅰ)連結,,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設,計算,,根據垂直關系得到答案.【詳解】(Ⅰ)連結,,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設平面法向量為,則,連結,可得,又所以,平面,平面的法向量,設二面角的平面角為,則.(Ⅲ)線段上存在點使得,設,,,,所以點為線段的中點.本題考查了線面平行,二面角,根據垂直關系確定位置,意在考查學生的計算能力和空間想象能力.21.(1)答案不唯一,具體見解析(2)【解析】

(1)分類討論,利用導數的正負,可得函數的單調區間.(2)分離出參數后,轉化為函數的最值問題解決,注意函數定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調遞減區間為,單調遞增區間為和.②當時,由,得由,得或此時的單調遞減區間為,單調遞增區間為和綜上:當時,單調遞減區間為,單調遞增區間為和當時,的單調遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論