2024-2025學年重慶市彭水縣第一中學高三下學期第一次階段達標數學試題含解析_第1頁
2024-2025學年重慶市彭水縣第一中學高三下學期第一次階段達標數學試題含解析_第2頁
2024-2025學年重慶市彭水縣第一中學高三下學期第一次階段達標數學試題含解析_第3頁
2024-2025學年重慶市彭水縣第一中學高三下學期第一次階段達標數學試題含解析_第4頁
2024-2025學年重慶市彭水縣第一中學高三下學期第一次階段達標數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年重慶市彭水縣第一中學高三下學期第一次階段達標數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于2.若復數滿足(是虛數單位),則的虛部為()A. B. C. D.3.函數(且)的圖象可能為()A. B. C. D.4.復數的共軛復數記作,已知復數對應復平面上的點,復數:滿足.則等于()A. B. C. D.5.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.6.函數在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-27.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.8.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.9.在三棱錐中,,且分別是棱,的中點,下面四個結論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④10.若,則()A. B. C. D.11.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或12.函數的定義域為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列滿足,,則的值為________.14.已知是拋物線上一點,是圓關于直線對稱的曲線上任意一點,則的最小值為________.15.已知數列為等差數列,數列為等比數列,滿足,其中,,則的值為_______________.16.已知實數,滿足約束條件,則的最大值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統計結果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;(Ⅲ)為便于聯絡,現將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯絡員,要求每組的聯絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出的最小值.(結論不要求證明)18.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.19.(12分)在直角坐標系xOy中,直線的參數方程為(t為參數).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.20.(12分)設數陣,其中、、、.設,其中,且.定義變換為“對于數陣的每一行,若其中有或,則將這一行中每個數都乘以;若其中沒有且沒有,則這一行中所有數均保持不變”(、、、).表示“將經過變換得到,再將經過變換得到、,以此類推,最后將經過變換得到”,記數陣中四個數的和為.(1)若,寫出經過變換后得到的數陣;(2)若,,求的值;(3)對任意確定的一個數陣,證明:的所有可能取值的和不超過.21.(12分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.22.(10分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.2.A【解析】

由得,然后分子分母同時乘以分母的共軛復數可得復數,從而可得的虛部.【詳解】因為,所以,所以復數的虛部為.故選A.本題考查了復數的除法運算和復數的概念,屬于基礎題.復數除法運算的方法是分子分母同時乘以分母的共軛復數,轉化為乘法運算.3.D【解析】因為,故函數是奇函數,所以排除A,B;取,則,故選D.考點:1.函數的基本性質;2.函數的圖象.4.A【解析】

根據復數的幾何意義得出復數,進而得出,由得出可計算出,由此可計算出.【詳解】由于復數對應復平面上的點,,則,,,因此,.故選:A.本題考查復數模的計算,考查了復數的坐標表示、共軛復數以及復數的除法,考查計算能力,屬于基礎題.5.C【解析】

以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當的直角坐標系,是一道基礎題.6.B【解析】

由函數解析式中含絕對值,所以去絕對值并畫出函數圖象,結合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數的圖象如下所示;由函數圖像可知,當時,有最大值,當時,有最小值.故選:B.本題考查了絕對值函數圖象的畫法,由函數圖象求函數的最值,屬于基礎題.7.B【解析】

設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.8.B【解析】

連接、,即可得到,,再根據平面向量的數量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B本題考查平面向量的數量積及其運算律的應用,屬于基礎題.9.D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.10.D【解析】

直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D本題考查的知識要點:三角函數關系式的恒等變變換,同角三角函數關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.11.D【解析】

設,,根據和拋物線性質得出,再根據雙曲線性質得出,,最后根據余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質,考查運算求解能力,屬于中檔題.12.C【解析】

函數的定義域應滿足故選C.二、填空題:本題共4小題,每小題5分,共20分。13.11【解析】

由等差數列的下標和性質可得,由即可求出公差,即可求解;【詳解】解:設等差數列的公差為,,又因為,解得故答案為:本題考查等差數列的通項公式及等差數列的性質的應用,屬于基礎題.14.【解析】

由題意求出圓的對稱圓的圓心坐標,求出對稱圓的圓坐標到拋物線上的點的距離的最小值,減去半徑即可得到的最小值.【詳解】假設圓心關于直線對稱的點為,則有,解方程組可得,所以曲線的方程為,圓心為,設,則,又,所以,,即,所以,故答案為:.該題考查的是有關動點距離的最小值問題,涉及到的知識點有點關于直線的對稱點,點與圓上點的距離的最小值為到圓心的距離減半徑,屬于中檔題目.15.【解析】

根據題意,判斷出,根據等比數列的性質可得,再令數列中的,,,根據等差數列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數列中的,,,根據等差數列的性質,可得,所以.②根據①②得出,.所以.故答案為.本題主要考查等差數列、等比數列的性質,屬于基礎題.16.【解析】

令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當直線經過時,最大,且,故的最大值為.故答案為:.本題考查線性規劃中非線性目標函數的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)萬;(Ⅱ)分布列見解析,;(Ⅲ)【解析】

(Ⅰ)根據比例關系直接計算得到答案.(Ⅱ)的可能取值為,計算概率得到分布列,再計算數學期望得到答案.(Ⅲ)英語測試成績在70分以上的概率為,故,解得答案.【詳解】(Ⅰ)樣本中女生英語成績在分以上的有人,故人數為:萬人.(Ⅱ)8名男生中,測試成績在70分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語測試成績在70分以上的概率為,故,故.故的最小值為.本題考查了樣本估計總體,分布列,數學期望,意在考查學生的計算能力和綜合應用能力.18.(1):,直線:;(2).【解析】

(1)由消參法把參數方程化為普通方程,再由公式進行直角坐標方程與極坐標方程的互化;(2)由極徑的定義可直接把代入曲線和直線的極坐標方程,求出極徑,把比值化為的三角函數,從而可得最大值、【詳解】(1)消去參數可得曲線的普通方程是,即,代入得,即,∴曲線的極坐標方程是;由,化為直角坐標方程為.(2)設,則,,,當時,取得最大值為.本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,掌握公式可輕松自如進行極坐標方程與直角坐標方程的互化.19.(1);(2)20【解析】

(1)利用即可得到答案;(2)利用直線參數方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數分別為,,從而,則.本題考查了極坐標方程與普通方程的互化、直線參數方程的幾何意義等知識,考查學生的計算能力,是一道容易題.20.(1);(2);(3)見解析.【解析】

(1)由,能求出經過變換后得到的數陣;(2)由,,求出數陣經過變化后的矩陣,進而可求得的值;(3)分和兩種情況討論,推導出變換后數陣的第一行和第二行的數字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經過變換后得到的數陣;(2)經變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個,經過變換后第一行均變為、;含有且不含的子集共個,經過變換后第一行均變為、;同時含有和的子集共個,經過變換后第一行仍為、;不含也不含的子集共個,經過變換后第一行仍為、.所以經過變換后所有的第一行的所有數的和為.若,則的所有非空子集中,含有的子集共個,經過變換后第一行均變為、;不含有的子集共個,經過變換后第一行仍為、.所以經過變換后所有的第一行的所有數的和為.同理,經過變換后所有的第二行的所有數的和為.所以的所有可能取值的和為,又因為、、、,所以的所有可能取值的和不超過.本題考查數陣變換的求法,考查數陣中四個數的和不超過的證明,考查類比推理、數陣變換等基礎知識,考查運算求解能力,綜合性強,難度大.21.(1);(2)【解析】分析:(1)將代入函數解析式,求得,利用零點分段將解析式化為,然后利用分段函數,分情況討論求得不等式的解集為;(2)根據題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論