




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年四川省內江市球溪中學高三畢業班高考數學試題模擬(一)試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.42.等差數列中,已知,且,則數列的前項和中最小的是()A.或 B. C. D.3.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.294.中國古代數學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.45.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④6.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)7.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.8.數列滿足:,則數列前項的和為A. B. C. D.9.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.410.若復數滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.12.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若存在直線l與函數及的圖象都相切,則實數的最小值為___________.14.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標原點,則面積的取值范圍是____________.15.若曲線(其中常數)在點處的切線的斜率為1,則________.16.函數的單調增區間為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數.).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標方程與點的極坐標;(2)已知直線的直角坐標方程為,直線與曲線相交于點(異于原點),求的面積.18.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.19.(12分)已知直線的參數方程:(為參數)和圓的極坐標方程:(1)將直線的參數方程化為普通方程,圓的極坐標方程化為直角坐標方程;(2)已知點,直線與圓相交于、兩點,求的值.20.(12分)已知數列的前項和為,且點在函數的圖像上;(1)求數列的通項公式;(2)設數列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數的取值范圍;21.(12分)已知數列的前項和為,且滿足.(1)求數列的通項公式;(2)若,,且數列前項和為,求的取值范圍.22.(10分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統計成績后得到如下列聯表:分數不少于120分分數不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是,求的分布列(概率用組合數算式表示);②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.2.C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數列前項和中最小的.【詳解】解:等差數列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數列前項和中最小的是.故選:C.本題主要考查等差數列的性質,等差數列的通項公式的應用,屬于中檔題.3.D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.4.D【解析】
根據三視圖即可求得幾何體表面積,即可解得未知數.【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.5.D【解析】
求出圓心到直線的距離為:,得出,根據條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據點到直線距離可知,①②④滿足條件.故選:D.本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.6.C【解析】
根據并集的求法直接求出結果.【詳解】∵,∴,故選C.考查并集的求法,屬于基礎題.7.C【解析】
根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.8.A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.9.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。10.D【解析】
利用復數模的計算、復數的除法化簡復數,再根據復數的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.本題考查復數模的計算、復數的除法、復數的幾何意義,考查運算求解能力,屬于基礎題.11.A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.12.B【解析】
根據誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設直線l與函數及的圖象分別相切于,,因為,所以函數的圖象在點處的切線方程為,即,因為,所以函數的圖象在點處的切線方程為,即,因為存在直線l與函數及的圖象都相切,所以,所以,令,設,則,當時,,函數單調遞減;當時,,函數單調遞增,所以,所以實數的最小值為.14.【解析】
由題意,,則,得.由題意可設的方程為,,聯立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當且僅當即時取等號.故面積的取值范圍是.15.【解析】
利用導數的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.本題考查導數的幾何意義,考查學生的基本運算能力,是一道基礎題.16.【解析】
先求出導數,再在定義域上考慮導數的符號為正時對應的的集合,從而可得函數的單調增區間.【詳解】函數的定義域為.,令,則,故函數的單調增區間為:.故答案為:.本題考查導數在函數單調性中的應用,注意先考慮函數的定義域,再考慮導數在定義域上的符號,本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)極坐標方程為,點的極坐標為(2)【解析】
(1)利用極坐標方程、普通方程、參數方程間的互化公式即可;(2)只需算出A、B兩點的極坐標,利用計算即可.【詳解】(1)曲線C:(為參數,),將代入,解得,即曲線的極坐標方程為,點的極坐標為.(2)由(1),得點的極坐標為,由直線過原點且傾斜角為,知點的極坐標為,.本題考查極坐標方程、普通方程、參數方程間的互化以及利用極徑求三角形面積,考查學生的運算能力,是一道基礎題.18.(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,,,,:,設平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設二面角的平面角為即二面角的正弦值為:.本題主要考查了求證線面垂直和向量法求二面角,解題關鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.19.(1):,:;(2)【解析】
(1)消去參數求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標方程.(2)求得直線的標準參數方程,代入圓的直角坐標方程,化簡后寫出韋達定理,根據直線參數的幾何意義,求得的值.【詳解】(1)消去參數,得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標方程為;(2)經檢驗點在直線上,可轉化為①,將①式代入圓的直角坐標方程為得,化簡得,設是方程的兩根,則,,∵,∴與同號,由的幾何意義得.本小題主要考查參數方程化為普通方程、極坐標方程化為直角坐標方程,考查利用直線參數的幾何意義求解距離問題,屬于中檔題.20.(1)(2)當n為偶數時,;當n為奇數時,.(3)【解析】
(1)根據,討論與兩種情況,即可求得數列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數或偶數時的通項公式.也可利用數學歸納法,先猜想出通項公式,再用數學歸納法證明.(3)分類討論,當n為奇數或偶數時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,,當時,也滿足上式.所以.(2)解法一:由(1)可知,即.當時,,①當時,,所以,②當時,,③當時,,所以,④……當時,n為偶數當時,n為偶數所以以上個式子相加,得.又,所以當n為偶數時,.同理,當n為奇數時,,所以,當n為奇數時,.解法二:猜測:當n為奇數時,.猜測:當n為偶數時,.以下用數學歸納法證明:,命題成立;假設當時,命題成立;當n為奇數時,,當時,n為偶數,由得故,時,命題也成立.綜上可知,當n為奇數時同理,當n為偶數時,命題仍成立.(3)由(2)可知.①當n為偶數時,,所以隨n的增大而減小從而當n為偶數時,的最大值是.②當n為奇數時,,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數的取值范圍是.本題考查了累加法求數列通項公式的應用,分類討論奇偶項的通項公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年心理咨詢師考試試卷及答案指導
- 2025年人力資源管理師職業能力測試試題及答案
- 2025年婚姻家庭關系考試卷及答案
- 2025年房地產經濟學學科知識考核試卷及答案
- 2025年公共政策與決策分析考試試卷及答案
- 2025年廣告學專業考試試題及答案
- 2025年公共衛生與事業發展專業綜合素質測評試題及答案
- 下冊第一單元語文作文7篇
- 特色農產品產銷對接合作契約
- 詩詞創作體驗活動設計
- 七年級課外名著閱讀知識競賽試題及答案
- 贛美版八年級美術下冊《第5課 產品包裝設計》教學設計
- 中國血脂管理指南理論知識考核試題及答案
- 村級積分制管理
- Nikon尼康D3100中文說明書
- 國家開放大學2024春《1494員工勞動關系管理》期末考試真題及答案-開
- DBJ∕T 13-234-2024 不發火建筑地面應用技術標準
- 2024年安徽省高考政治+歷史+地理試卷(真題+答案)
- 2024年新疆中考地理真題卷及答案
- 人教版初三物理總復習電學專題復習教學設計
- 項目風險記錄及跟蹤表
評論
0/150
提交評論