




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象可能為()A. B.C. D.2.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.3.已知集合,,則為()A. B. C. D.4.若表示不超過的最大整數(如,,),已知,,,則()A.2 B.5 C.7 D.85.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數字為莖,個位數字為葉).若甲隊得分的中位數是86,乙隊得分的平均數是88,則()A.170 B.10 C.172 D.126.等比數列中,,則與的等比中項是()A.±4 B.4 C. D.7.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.8.設雙曲線的左右焦點分別為,點.已知動點在雙曲線的右支上,且點不共線.若的周長的最小值為,則雙曲線的離心率的取值范圍是()A. B. C. D.9.若與互為共軛復數,則()A.0 B.3 C.-1 D.410.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準線與軸交于,的面積為,則()A. B. C. D.11.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.12.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.14.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.15.如圖,養殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形養殖區.為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為______________百米.16.已知F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),則△PMF周長的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)解不等式;(2)使得,求實數的取值范圍.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰,建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現全面建成小康社會的奮斗目標.為了響應黨的號召,某市對口某貧困鄉鎮開展扶貧工作.對某種農產品加工生產銷售進行指導,經調查知,在一個銷售季度內,每售出一噸該產品獲利5萬元,未售出的商品,每噸虧損2萬元.經統計,兩市場以往100個銷售周期該產品的市場需求量的頻數分布如下表:市場:需求量(噸)90100110頻數205030市場:需求量(噸)90100110頻數106030把市場需求量的頻率視為需求量的概率,設該廠在下個銷售周期內生產噸該產品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據,確定下個銷售周期內生產量噸還是噸?并說明理由.20.(12分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補充在上面問題中并作答.21.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.22.(10分)若函數為奇函數,且時有極小值.(1)求實數的值與實數的取值范圍;(2)若恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
先根據是奇函數,排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數,故排除A,B,又,故選:C【點睛】本題主要考查函數的圖象,還考查了理解辨析的能力,屬于基礎題.2.A【解析】
由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.3.C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.4.B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數列,則.故選:B.【點睛】本題考查周期數列的判斷和取整函數的應用.5.D【解析】
中位數指一串數據按從小(大)到大(小)排列后,處在最中間的那個數,平均數指一串數據的算術平均數.【詳解】由莖葉圖知,甲的中位數為,故;乙的平均數為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應用,涉及到中位數、平均數的知識,是一道容易題.6.A【解析】
利用等比數列的性質可得,即可得出.【詳解】設與的等比中項是.
由等比數列的性質可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎題.7.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.8.A【解析】
依題意可得即可得到,從而求出雙曲線的離心率的取值范圍;【詳解】解:依題意可得如下圖象,所以則所以所以所以,即故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于中檔題.9.C【解析】
計算,由共軛復數的概念解得即可.【詳解】,又由共軛復數概念得:,.故選:C【點睛】本題主要考查了復數的運算,共軛復數的概念.10.B【解析】
設點、,并設直線的方程為,由得,將直線的方程代入韋達定理,求得,結合的面積求得的值,結合焦點弦長公式可求得.【詳解】設點、,并設直線的方程為,將直線的方程與拋物線方程聯立,消去得,由韋達定理得,,,,,,,,可得,,拋物線的準線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關鍵,考查計算能力,屬于中等題.11.A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數量積分拆,設,數量積轉化為關于t的函數,用函數可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數求最值。12.C【解析】
將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.14.③④【解析】
由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.【點睛】本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.15.【解析】
建系,將直線用方程表示出來,再用參數表示出線段的長度,最后利用導數來求函數最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標系,則.設直線,即,則,所以,所以,,則,則,當時,,則單調遞減,當時,,則單調遞增,所以當時,最短,此時.故答案為:【點睛】本題考查導數的實際應用,屬于中檔題.16.5【解析】
△PMF的周長最小,即求最小,過做拋物線準線的垂線,垂足為,轉化為求最小,數形結合即可求解.【詳解】如圖,F為拋物線C:x2=8y的焦點,P為C上一點,M(﹣4,3),拋物線C:x2=8y的焦點為F(0,2),準線方程為y=﹣2.過作準線的垂線,垂足為,則有,當且僅當三點共線時,等號成立,所以△PMF的周長最小值為55.故答案為:5.【點睛】本題考查拋物線定義的應用,考查數形結合與數學轉化思想方法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【解析】
(1)分段討論得出函數的解析式,再分范圍解不等式,可得解集;(2)先求出函數的最小值,再建立關于的不等式,可求得實數的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數,絕對值不等式的解法,以及關于函數的存在和任意的問題,屬于中檔題.18..【解析】試題分析:,所以.試題解析:B.因為,所以.19.(1);(2)噸,理由見解析【解析】
(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當時,當時,.,時,平均利潤大,所以下個銷售周期內生產量噸.【點睛】本題考查離散型隨機變量的期望,是中檔題.20.詳見解析【解析】
選擇①,利用正弦定理求得,利用余弦定理求得,再計算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因為,所以,即;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇③,在中,由,得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.【點睛】本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.21.(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
運用數學歸納法證明即可得到結果化簡,運用累加法得出結果運用放縮法和累加法進行求證【詳解】(Ⅰ)數學歸納法證明時,①當時,成立;②當時,假設成立,則時所以時,成立綜上①②可知,時,(Ⅱ)由得所以;;故,又所以(Ⅲ)由累加法得:所以故【點睛】本題考查了數列的綜合,運用數學歸納法證明不等式的成立,結合已知條件進行化簡求出化簡后的結果,利用放縮法求出不等式,然后兩邊同時取對數再進行證明,本題較為困難。22.(1),;(2)【解析】
(1)由奇函數可知在定義域上恒成立,由此建立方程,即可求出實數的值;對函數進行求導,,通過導數求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數可知在上為單調減函數,由可得,從而可求實數的取值范圍.【詳解】(1)由函數為奇函數,得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國激光功率監視器行業市場發展前景及發展趨勢與投資戰略研究報告
- 腦梗死護理指南
- 理財培訓課件
- 2025-2030年中國140g瓦楞紙箱行業深度研究分析報告
- 中國濃縮魚油軟膠囊行業市場深度研究及投資戰略規劃建議報告
- 切樸機行業深度研究分析報告(2024-2030版)
- 中國六角鉆尾釘行業市場發展前景及發展趨勢與投資戰略研究報告(2024-2030)
- 2025年 宜昌市市級機關遴選考試筆試試題附答案
- 2025年 湖南大學幼兒園招聘考試筆試試題附答案
- 2025-2030年中國鹽基青蓮粒行業深度研究分析報告
- TTJSFB 002-2024 綠色融資租賃項目評價指南
- 無人機培訓計劃及方案
- 臨終關懷中的文化敏感性
- 河湖生態系統保護與修復工程技術導則
- 運動改造大腦閱讀記錄
- DL∕T 2011-2019 大型發電機定子繞組現場更換處理試驗規程
- 從黃土高原視角品黃河生態變遷智慧樹知到期末考試答案章節答案2024年西北工業大學
- 電通量高斯定理課件
- 廣東省東莞市2023-2024學年高二下學期7月期末英語試題
- 2024年云南省職業院校技能大賽(中職組)植物嫁接賽項考試題庫(含答案)
- 河北省建設項目概算其他費用定額
評論
0/150
提交評論