




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
教學(xué)設(shè)計
課題平面向量實際背景及基本概念授課人
1.從生活實例和物理素材中感受向量以及研究向量的必要性.
教
學(xué)2.理解平面向量的含義、向量的幾何表示,向量的模.
目3.理解零向量、單位向量、平行向量、相等向量、共線向量的含義能在圖形中辨
標(biāo)
認相等向量和共線向量.
重
向量概念,向量的幾何表示,以及平行向量概念.
八盧八
難理解零向量,單位向量,相等向量,平行向量的含義,讓學(xué)生感受向量,平行
點或共線向量等概念形成過程.
過師生
教學(xué)內(nèi)容與教師活動設(shè)計意圖
程活動
[設(shè)計
問情境引入意圖】向量
題)創(chuàng)設(shè)情境:(學(xué)生馬上概念不是
情現(xiàn)場播放《貓與老鼠》一段視頻得出結(jié)論:追不憑空產(chǎn)生
境句題情境:在同一時亥(老鼠由A向東北方向上,貓的速度再快的。用這一
以6m/s的速度逃竄,貓在B處向東南方向10m/s的也沒用,因為方向簡單直觀
速度追,貓能否追到老鼠呢?’錯了.)的問題讓
學(xué)生感受
“既有大
小又有方
探向的量”的
究客觀存在,
新自然引出
知Q課堂探究學(xué)習(xí)內(nèi)容,
學(xué)生會產(chǎn)
(二)建構(gòu)數(shù)學(xué)自主探究:(學(xué)生能容易地
生親切感,
探究1.向量的概念舉出重力、浮力、
有助于激
問題1你能否再舉出一些既有方向,又有大小作用力等物理中
發(fā)學(xué)習(xí)興
的量?學(xué)過的量.)
趣.
(學(xué)生所舉
追問:生活中有沒有只有大小,沒有方向的的例子有年齡、身【設(shè)計
量?請你舉例.高、面積等.)意圖】激活
教師:由同學(xué)們的舉例可見,現(xiàn)實中有的量概念抽象需學(xué)生的已
只有大小沒有方向,有的量既有大小又有方向.數(shù)要典型豐富的實有相關(guān)經(jīng)
學(xué)中對位移、力……這些既有大小又有方向的量進例.讓學(xué)生舉例可驗.
行抽象,就形成一種新的量一一向量以觀察到他們對【設(shè)計意
概念屬性的領(lǐng)悟,圖】形成區(qū)
句量---既有大小又有方向的量形成對概念的初別不同量
數(shù)量一一只有大小沒有方向的量步認識,為進一步的必要性.
抽象概括做準(zhǔn)備.[設(shè)計
思考:判斷下列說法是否正確:意圖】由學(xué)
①由于零上溫度可以用正數(shù)來表示,零下溫學(xué)生先獨立思考,生熟悉的
度可以用負數(shù)來表示,所以溫度是向量.然后小組合作探知識引入,
②坐標(biāo)平面上的x軸和y軸是向量.究以此更加
自然地引
入向量概
念,并建立
學(xué)習(xí)向量
的認知基
探究2.向量的表示礎(chǔ).
問題2數(shù)學(xué)中,定義概念后,通常要用符號表
示它.從向量的定義看,向量是既有大小又有方向【設(shè)計意
的量,那么該怎樣把向量表示出來呢?圖】引導(dǎo)學(xué)
教師:參照物理中表示力的方法,類比幾何中有向生通過類
線段及有向線段長度的表示方法,得到向量及向量比,討論向
大小的表示方法量的表示、
①幾何表示法:常用一條有向線段表示向量學(xué)生先獨立思考,定義特殊
(如圖所示).tB然后小組合作探向量,讓學(xué)
終點)
究生參與到
盅點)定義概念
小的活動中
組②符號表示:以力為起點、6為終點的有向線來,不輕易
合段,記作AB.(注意起終點順序).打斷學(xué)生
作的思維和
③字母表示法:可表示而為£.(一定要學(xué)生
探活動,恰如
究其分地“以
規(guī)范書寫:印刷用黑體書寫用£)
a,問題引導(dǎo)
學(xué)習(xí)”,在
④向量A豆的大小----向量AB長度(或稱質(zhì)疑----
反思的過
勻向量的模).記作:麗.
程中深化
思考:概念的理
解,使概念
①而與麗相同嗎?,耳與卜臼相同嗎?學(xué)生先獨立思考,
的理解成
然后小組合作探
為學(xué)生自
②若忖〉忖,則一定有a〉坂嗎?究
動己主動思
手兩個特殊向量維的結(jié)果.
(學(xué)生普遍認
實問題3在實數(shù)集中,0和1是兩個特殊的元
為零向量、單位向
驗素,。是正負分界點,有。就可以定義相反數(shù),1
是單位,作用很大。類比實數(shù),在向量中,你認為量是特殊的.)
哪些向量比較特殊?
①零向量一一長度為零的向量,記作6.規(guī)
定:零向量的方向是任意的。
②單位向量一一K度等于1個單位長度的向
'it.
思考:學(xué)生先獨立思考,
①單位向量唯一嗎?然后小組合作探
②在平面上把所有單位向量的起點平移到同究,可以動手用
一點,那么它們的終點的集合組成什么圖形?TI手持計算器進
行驗證.
以小組為單位向
動
全班展示探究成
手
實果.[設(shè)
驗計意圖】不
是先給出
相等向量、
學(xué)生先獨立思考,
探究3.相等向量、平行向量、共線向量、相平行向量、
然后小組合作探
反向量的概念共線向量、
究
小問題4觀察圖中的正六邊形ABCDEF.給圖中相反向量
組的任意兩個線段加上箭頭表示向量,并說說你所標(biāo)的定義,再
合注的向量之間的關(guān)系.(舉例)做練習(xí)鞏
作固,而是讓
E,____________D
探一學(xué)生參與
究概念的形
自主實驗,形成初
成過程,使
步結(jié)論
概念成為
學(xué)生觀察、
歸納、概括
之后的自
\B然產(chǎn)物.
動學(xué)生動手用TI手留給
手問題5你是怎樣研究的?比如,你畫了哪幾個持計算器進行驗學(xué)生足夠
實向量?你認為它們有怎樣的關(guān)系?的時間,并
驗證.提出問題
以小組為單位向5,組織學(xué)
「相等生交流.
全班展示探究成
結(jié)論:[方向相同:大小Y
尿相等
果.
1「相等
1方向相反:大小一
樂相等
、方向既不相同也不相反
教師:任意兩個非零向量之間的關(guān)系,我們將學(xué)生先獨立思考,
在本章中逐步學(xué)習(xí),這節(jié)課我們先學(xué)習(xí)其中的特殊然后小組合作探
關(guān)系,,那么從方向來看大家認為哪些向量的關(guān)系究.
是特殊的?
學(xué)方向相同或相反的非零向量叫做平行向量,記自主實驗,形成初【設(shè)計意
生步結(jié)論.圖】引導(dǎo)學(xué)
作aHb.規(guī)定:6與任一向量平行.
小生由方向
組教師:從大小和方向一起看,又有哪些向量是相同或相
合特殊的?反的向量
作由學(xué)生討論得出結(jié)論:得出平行
探長度相等且方向相同的向量叫做相等向量,記向量的定
究義.
作a=5
長度相等且方向相反的向量叫做相反向量,記
作a=
并得到結(jié)論:只要大小和方向不變,向量和位
置無關(guān),可以在平面內(nèi)任意平移.通過學(xué)生
問題6如果圖中的三個向量的起點平移到同運用TI手
學(xué)生動手用TI手
持計算器
一起點。'處,E4---------D持計算器進行驗
NA小組合作
證探究規(guī)律,
讓學(xué)生體
以小組為單位向
驗數(shù)學(xué)實
全班展示探究成驗的過程,
培養(yǎng)學(xué)生
果.
的質(zhì)疑意
^A7,B識、探索意
那么這三個向量的位置有何特征?識,歸納意
結(jié)論:平行向量又叫做共線向量。識.
思考:下列各組向量是否平行?
//7卜B
學(xué)////\A
生c
典\
例C
探①②③④
究
想一想:向量的平行與線段的平行有沒有區(qū)
別?
教師強調(diào)應(yīng)注意
的問題[設(shè)
計意圖】讓
學(xué)生注意
把向量概
念與物理
背景、幾何
背景明確
區(qū)分,真正
抓住向量
的本質(zhì)特
征,完成
“數(shù)學(xué)化”
的過程.
位
課堂小結(jié)【設(shè)計意
(三)歸納交流圖】給學(xué)生
學(xué)生總結(jié),體驗成
1.學(xué)生談本節(jié)課的學(xué)習(xí)體會.提供一個
2、本節(jié)課體現(xiàn)了那些數(shù)學(xué)思想和數(shù)學(xué)方法?功總結(jié)本節(jié)收獲。
闡明想法、
數(shù)學(xué)思想:數(shù)形結(jié)合、類比的數(shù)學(xué)方法.
發(fā)表觀點、
談?wù)勈斋@
的平臺,便
于教師了
解學(xué)生本
節(jié)課的學(xué)
習(xí)情況。
鞏也鞏固練習(xí)
固
(四)知識運用,鞏固強化:
練
習(xí)
/|限時訓(xùn)練卜[設(shè)
計意圖】通
過兩組題
練習(xí)一:目,由淺入
判斷下列命題是否正確,若不正確,請簡述理學(xué)生獨立限時完深,以學(xué)生
由.成.研究討論
(1)與非零向量二平行的單位向量有無數(shù)個.得出結(jié)論,
能充分調(diào)
(2)物理學(xué)中的作用力與反作用力是一對共動大家的
線向量.積極性.
(3)若麗=反,則直線AB與直線CD平行.
(4)若,=0,則。=0.
練習(xí)二:
如圖,D、E、F分別是AABC各邊上的中點,在
以A、B、C、I)、E、F為端點的有向線段表示的向
量中,請分別寫出:
如圖,D、E、F分別是AABC各邊上的中點,在
以A、B、C、D、E、F為端點的有向線段表示的向
量中,請分別寫出:
(1)與向量瓦相等的向量有一個,分別是
(2)與向量力Q的模相等、方向相反的向量
有一個,分別是_________________;
(3)與向量方后共線的向量有一個,
分別是_______________________;[設(shè)
計意圖】通
A過作業(yè),進
一步內(nèi)化
學(xué)生的認
知結(jié)構(gòu),并
弄清知識
學(xué)生課下鞏固練和方法上
2習(xí),分層布置作的易混點、
B業(yè),滿足不同學(xué)生易錯點;培
DC的需要.養(yǎng)學(xué)生的
41課后作業(yè)
動手實踐、
合作探究
1.P77習(xí)題2.1第1、2小題。能力,讓學(xué)
2.在實際的生活中還有許多離不開生進一步
方向和大小的實例,請大家在課體會數(shù)學(xué)
后進行收集、討論。的科學(xué)價
值和應(yīng)用
價值,增強
學(xué)生學(xué)習(xí)
數(shù)學(xué)的興
趣,激發(fā)學(xué)
生的學(xué)習(xí)
熱情.
《平面向量實際背景及基本概念》學(xué)情分析
本節(jié)課在高一第二學(xué)段,對于高中常用的數(shù)學(xué)思想方法和研究問題的方法學(xué)生已經(jīng)有
初步的了解,并且逐步適應(yīng)高中的學(xué)習(xí)方式和教師的教學(xué)方式,喜歡小組探究學(xué)習(xí),喜歡獨
立思考,探究未知內(nèi)容,學(xué)習(xí)欲望迫切。本課是必修四第二章《平面向量》第一節(jié),是新知
識的一個起點,所以這是十分關(guān)鍵、重要的一節(jié)課。本節(jié)教學(xué)內(nèi)容的特點是:概念多,有向
量、平行向量、相等向量、單位向量等相關(guān)概念及向量的幾何表示。學(xué)生在學(xué)習(xí)過程中,諸
多概念容易混淆,它們之間關(guān)系不易理清,這些是學(xué)習(xí)中的難點。
在學(xué)生的已有經(jīng)驗中,接觸較多的是只有大小的量(數(shù)量),此外學(xué)生曾學(xué)習(xí)物理中的
矢量的概念,線段的平行與共線,還有三角函數(shù)中的有向線段等.在學(xué)生的已有經(jīng)驗中,與
本節(jié)內(nèi)容相關(guān)的有:數(shù)的抽象過程,實數(shù)的絕對值(線段的長度),數(shù)的相等,0和I的特
殊性,線段的平行或共線等,這些將為學(xué)生自覺,有序、有效地認知向量概念提供“固著點”.
課程名稱:平面向量實際背景及基本概念
青島第十六中學(xué)高中數(shù)學(xué)組
學(xué)習(xí)效果分析:
1.通過《貓與老鼠》一段動畫視頻,創(chuàng)設(shè)問題情境,自然引出學(xué)習(xí)內(nèi)容,使學(xué)生產(chǎn)生
親切感,激發(fā)學(xué)習(xí)興趣.為本節(jié)課的順利開展打下了良好的基礎(chǔ)。
2.圖象計算器、PPT等信息化教學(xué)技術(shù)的添加,使平面向量概念的學(xué)習(xí)更加形象、生動,
增強了學(xué)生的探究的學(xué)習(xí)興趣,使整堂課效果極佳。
3.本節(jié)課采用學(xué)生動手實驗與探究相結(jié)合、獨立思考與小組合作相結(jié)合。通過類比數(shù)集
初步認識向量集合,利用圖形計算器進行數(shù)學(xué)實驗,在學(xué)生動手實踐、觀察、思考問題的過
程中,關(guān)注學(xué)生發(fā)現(xiàn)問題、解決問題的能力;并在進一步的學(xué)習(xí)過程中,體會用聯(lián)系的觀點、
類比的方法研究向量(主要是聯(lián)系數(shù)及其運算、直線(段)的平行和共線等);體會研究一
類新的數(shù)學(xué)問題的基本套路(思路).
4.在各組共同學(xué)習(xí)、解決問題的過程中,觀察學(xué)生合作交流、學(xué)習(xí)的能力。
5.通過課堂活動與交流,了解學(xué)生對知識的掌握程度,通過反饋,對易錯、易混的知識
點,做出啟發(fā)性的指導(dǎo)。
6.通過課堂小結(jié),學(xué)生說出自己的收獲,與別人分享學(xué)習(xí)數(shù)學(xué)的體會,激發(fā)學(xué)習(xí)數(shù)學(xué)的
積極性,建立自信心。
7.本節(jié)課在引導(dǎo)學(xué)生探究的過程中,關(guān)注學(xué)生的認知心理過程,重視學(xué)生學(xué)習(xí)過程中的參與度、
自信心以及獨立思考能力。教學(xué)過程中注重層次性,對基礎(chǔ)薄弱的學(xué)生多給他們創(chuàng)造機會,力爭
每一個層次的學(xué)生都能有機會得到積極的評價,因為這是讓他們保持自信,愛好數(shù)學(xué)的最佳培養(yǎng)
時機。
課程名稱:平面向量實際背景及基本概念
青島第十六中學(xué)高中數(shù)學(xué)組
一、教學(xué)內(nèi)容
本節(jié)選自人教A版必修四第二章《平面向量》第一節(jié)內(nèi)容。
二、教材分析
《平面向量》是“人教A版”數(shù)學(xué)4的第二章,本節(jié)課包括“章引言”和“2.1平面向
量的實際背景及基本概念”兩部分.
向量這一概念是由物理學(xué)和工程技術(shù)抽象出來的,反過來,向量的理論和方法,又成為
解決物理學(xué)和工程技術(shù)的重要工具,向量之所以有用,關(guān)鍵是它具有一套良好的運算性質(zhì),
通過向量可把空間圖形的性質(zhì)轉(zhuǎn)化為向量的運算,這樣通過向量就能較容易地研究空間的直
線和平面的各種有關(guān)問題.
向量不同于數(shù)量,它是一種新的量,關(guān)于數(shù)量的代數(shù)運算在向量范圍內(nèi)不都適用.因此,
本章在介紹向量概念時,重點說明了向量與數(shù)量的區(qū)別,然后又重新給出了向量代數(shù)的部分
運算法則,包括加法,減法,實數(shù)與向量的積,向量的數(shù)量積的運算法則等.之后,又將向
量與坐標(biāo)聯(lián)系起來,把關(guān)于向量的代數(shù)運算與數(shù)量(向量的坐標(biāo))的代數(shù)運算聯(lián)系起來,這就
為研究和解決有關(guān)幾何問題又提供了兩種方法一一向量法和坐標(biāo)法.
本章共分五大節(jié).第一節(jié)是“平面向量的實際背景及基本概念”,內(nèi)容包括向量的物理
背景與概念,向量的幾何表示,相等向量與共線向量.
本課是“平面向量”的起始課,具有“統(tǒng)領(lǐng)全局”的作用。本節(jié)概念課,重要的不是向
量的形式化定義及幾個相關(guān)概念,而是能讓學(xué)生去體會認識與研究數(shù)學(xué)新對象的方法和基本
思路,進而提高提出問題,解決問題的能力.
本節(jié)從物理學(xué)中的位移,力這些既有大小又有方向的量出發(fā),抽象出向量的概念,并重
點說明了向量與數(shù)量的區(qū)別,然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,
平行向量,共線向量,相等向量等基本概念.
知識與技能目標(biāo):
L從生活實例和物理素材中感受向量以及研究向量的必要性.
2.理解平面向量的含義、向量的幾何表示,向量的模.
3.理解零向量、單位向量、平行向量、相等向量、共線向量的含義,能在圖形中辨認相等向
量和共線向量.
過程與方法目標(biāo):
通過本課的學(xué)習(xí)培養(yǎng)學(xué)生用聯(lián)系的觀點,類比的方法研究向量;獲得研究數(shù)學(xué)新問題的
基本思路,學(xué)會概念思維;使學(xué)生自然的,水到渠成的實現(xiàn)“概念的形成”;讓學(xué)生積極參
與到概念本質(zhì)特征的概括活動中,享受寓教于樂的樂趣.
情感、態(tài)度價值觀目標(biāo):
通過學(xué)習(xí)過程培養(yǎng)學(xué)生探索與協(xié)作的精神,在養(yǎng)成獨立思考的習(xí)慣的同時,提高合作學(xué)
習(xí)的意識。
教學(xué)重點:向量概念,向量的幾何表示,以及平行向量概念.
教學(xué)難點:理解零向量,單位向量,相等向量,平行向量的含義,讓學(xué)生感受向量,平
行或共線向量等概念形成過程.
課程名稱:平面向量實際背景及基本概
念
青島第十六中學(xué)高中數(shù)學(xué)組
評測練習(xí)
判斷下列命題是否正確,若不正確,請簡述理由.
(1)與非零向量:平行的單位向量有無數(shù)個.
(2)物理學(xué)中的作用力與反作用力是一對共線向量.
(3)若則直線AB與直線CD平行.
(4)若卜|=0,則4=0.
(5)平行向量一定方向相同.
(6)共線向量一定相等.
(7)起點不同,但方向相同且模相等的幾個向量是相等的向量.
(8)不相等的向量,則一定不平行.
二、選擇題
1、例I犍臥不齦響1的是()
A.距離B.力腱度C.力D.位移
2、下列四個命題舊解1是()
A.兩個單位向量f相等B.若a與b不儂,則a與b都是斗耀向量
C.颯嬋位向鼬中聘D.兩個相符的向最圓顯方向、長瀏頒都相同
3、杼㈱埼知健
A.向量04的長度與向量A0的長度幡B.零向量與任圜由向量平行
C.長度儲方向相反的向量蛾I).砸
4、在ZMS7中,除£加強能"的屯點則
A.AB與AC撤R0E與CB麒CA。與AE僻D.A。與B。嶙
5、下列命題中,正確的是()
A.|a|=|〃|na=5B.|tz|>||=i>a>bC.a=B=>a與5共線D.|〃|=0=a=()
6、設(shè)O是正方形A8CD的中心,向量/、而、前、而是()
A.平行向量B.有相同終點的向量C.相等向量D.模相等的向量
7、AABC中,D、E、F分別為8C、C4、AB的中點,在以A、B、C、£>、E、F為
端點的有向線段所表示的向量中,與所共線的向量有()
A.2個B.3個C.6個D.7個
三.填空題:
1、如圖,D、E、F分別是aABC各邊上的中點,在以A、B、C、D、E、F為端點的有向線段表
示的向量中,請分別寫出:A
(1)與向量瓦相等的向量有一個,分別是___________;
(2)與向量方萬的模相等、方向相反的向量有一個,.
分別是;
(3)與向量方共線的向量有一個,/___________J
Br
分別是;Dc
2、如圖,。是正方形ABCD的對角線的交點,四邊形OCFB是正方形,在圖中所
示的向量中,?
(1)與血相等的向量有
(2)與加共線的向量有;
(3)與標(biāo)模相等的向量有;
(4)向量荷與瓦是否相等?答:
3、.O是正六邊形ABCDEF的中心,S.AO=a,OB=b,AB=c,在以A、B、C、D、
E、F、O為端點的向量中:
(1)與2相等的向量有;
(2)與B相等的向量有;
(3)與工相等的向量有.
4、下列說法中正確是.(寫序號)
(1)若£與5是平行向量,則公與B方向相同或相反;
(2)若法與前共線,則點A、B、C、。共線;
(3)四邊形ABGD為平行四邊形,則4j=C£i;
(4)若a=B,b=c,貝l]a=c;
(5)四邊形AB8中,麗=配且|4月|=|4力|,則四邊形ABCD為正方形;
(6)a與B方向相同且|“|=|5|與是一致的;
課程名稱:平面向量實際背景及基本概念
青島第十六中學(xué)高中數(shù)學(xué)組
課后反思:
本節(jié)課我講的是人教版高中數(shù)學(xué)必修(4)第二章第一節(jié)的內(nèi)容——平面向量實際背景
及基本概念。向量是近代數(shù)學(xué)中最重要和最基本的數(shù)學(xué)概念之一,它是溝通代數(shù)、幾何與三
角函數(shù)的一種工具,有深刻的幾何背景及代數(shù)意義,因此向量具有數(shù)形結(jié)合的特征,是深入
學(xué)習(xí)數(shù)學(xué)及解決各類數(shù)學(xué)問題的有效工具,在其他學(xué)科
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年紡織工程師實操考核的試題及答案
- 決勝中考物理試題及答案
- 2024年設(shè)計師職業(yè)規(guī)劃試題及答案
- 廣告設(shè)計師考試設(shè)計流程管理題及答案
- 公司法 司法試題及答案
- 探討2024年美術(shù)設(shè)計師考試題型試題及答案
- 機床初級考試試題及答案
- 廣告設(shè)計師的教學(xué)與培訓(xùn)方法 試題及答案
- 三天面試題及答案
- 汶上二招試題題庫及答案
- 小學(xué)數(shù)學(xué)二年級下冊-第七、八單元教材分析
- 職業(yè)道德與法律第一課第一節(jié)課件市公開課一等獎省賽課微課金獎?wù)n件
- 部編人教版《道德與法治》九年級下冊教案(全冊)
- 2024春期國開電大思政課《中國近現(xiàn)代史綱要》在線形考(專題檢測一至八)試題及答案
- 全過程工程咨詢服務(wù)項目管理服務(wù)方案
- 復(fù)方氨基酸注射液(17AA-II)-臨床用藥解讀
- 貧血中醫(yī)辨證分析
- PLC的故障排除與維護技巧與方法
- 2019版新人教版高中英語必修+選擇性必修共7冊詞匯表匯總(帶音標(biāo))
- 微波技術(shù)與天線實驗3利用HFSS仿真分析矩形波導(dǎo)
- GJB9001C內(nèi)部審核檢查表
評論
0/150
提交評論