2022年山東省煙臺市高三數學第一學期期末綜合測試模擬試題含解析_第1頁
2022年山東省煙臺市高三數學第一學期期末綜合測試模擬試題含解析_第2頁
2022年山東省煙臺市高三數學第一學期期末綜合測試模擬試題含解析_第3頁
2022年山東省煙臺市高三數學第一學期期末綜合測試模擬試題含解析_第4頁
2022年山東省煙臺市高三數學第一學期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,且分別是棱,的中點,下面四個結論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④2.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.正三棱錐底面邊長為3,側棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.4.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則5.數學中有許多形狀優美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④6.在平行四邊形中,若則()A. B. C. D.7.以,為直徑的圓的方程是A. B.C. D.8.已知點P不在直線l、m上,則“過點P可以作無數個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知為銳角,且,則等于()A. B. C. D.10.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.11.若,滿足約束條件,則的最大值是()A. B. C.13 D.12.古希臘數學家畢達哥拉斯在公元前六世紀發現了第一、二個“完全數”6和28,進一步研究發現后續三個“完全數”分別為496,8128,33550336,現將這五個“完全數”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.集合,,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;14.如圖是一個算法的偽代碼,運行后輸出的值為___________.15.秦九韶算法是南宋時期數學家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.16.已知,且,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.18.(12分)已知橢圓的右頂點為,為上頂點,點為橢圓上一動點.(1)若,求直線與軸的交點坐標;(2)設為橢圓的右焦點,過點與軸垂直的直線為,的中點為,過點作直線的垂線,垂足為,求證:直線與直線的交點在橢圓上.19.(12分)已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.(1)設直線,的斜率分別為,,求證:常數;(2)①設的內切圓圓心為的半徑為,試用表示點的橫坐標;②當的內切圓的面積為時,求直線的方程.20.(12分)△的內角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.21.(12分)已知函數,其中.(1)討論函數的零點個數;(2)求證:.22.(10分)在中,角,,的對邊分別為,其中,.(1)求角的值;(2)若,,為邊上的任意一點,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.2、D【解析】

根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.3、D【解析】

由側棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關系.掌握正棱錐性質是解題關鍵.4、C【解析】

根據線面的位置關系,結合線面平行的判定定理、平行線的性質進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據平行線的性質可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質,考查了推理論證能力.5、C【解析】

①利用之間的代換判斷出對稱軸的條數;②利用基本不等式求解出到原點的距離最大值;③將面積轉化為的關系式,然后根據基本不等式求解出最大值;④根據滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.6、C【解析】

由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,

平行四邊形中,,

,,,

因為,

所以

,

,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).7、A【解析】

設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.8、C【解析】

根據直線和平面平行的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質是解決本題的關鍵.9、C【解析】

由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應用,考查學生對三角函數式化簡求值公式的靈活運用的能力,屬于基礎題.10、D【解析】

先求出橢圓方程,再利用橢圓的定義得到,利用二次函數的性質可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質,一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質來考慮與焦點三角形有關的問題,本題屬于基礎題.11、C【解析】

由已知畫出可行域,利用目標函數的幾何意義求最大值.【詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規劃問題,考查數形結合的數學思想以及運算求解能力,屬于基礎題.12、B【解析】

推導出基本事件總數,6和28恰好在同一組包含的基本事件個數,由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數,6和28恰好在同一組包含的基本事件個數,∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】

根據對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據集合的交集求參數,意在考查學生的計算能力和轉化能力,利用對稱性是解題的關鍵.14、13【解析】根據題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.15、1055【解析】

模擬執行程序框圖中的程序,即可求得結果.【詳解】模擬執行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【點睛】本題考查程序框圖的模擬執行,屬基礎題.16、【解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由已知短軸長求出,離心率求出關系,結合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據弦長公式,求出,即可求出結論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的取值范圍是.【點睛】本題考查橢圓標準方程、直線與橢圓的位置關系,注意根與系數關系、弦長公式、函數最值、橢圓性質的合理應用,意在考查邏輯推理、計算求解能力,屬于難題.18、(1)(2)見解析【解析】

(1)直接求出直線方程,與橢圓方程聯立求出點坐標,從而可得直線方程,得其與軸交點坐標;(2)設,則,求出直線和的方程,從而求得兩直線的交點坐標,證明此交點在橢圓上,即此點坐標適合橢圓方程.代入驗證即可.注意分和說明.【詳解】解:本題考查直線與橢圓的位置關系的綜合,(1)由題知,,則.因為,所以,則直線的方程為,聯立,可得故.則,直線的方程為.令,得,故直線與軸的交點坐標為.(2)證明:因為,,所以.設點,則.設當時,設,則,此時直線與軸垂直,其直線方程為,直線的方程為,即.在方程中,令,得,得交點為,顯然在橢圓上.同理當時,交點也在橢圓上.當時,可設直線的方程為,即.直線的方程為,聯立方程,消去得,化簡并解得.將代入中,化簡得.所以兩直線的交點為.因為,又因為,所以,則,所以點在橢圓上.綜上所述,直線與直線的交點在橢圓上.【點睛】本題考查直線與橢圓相交問題,解題方法是解析幾何的基本方程,求出直線方程,解方程組求出交點坐標,代入曲線方程驗證點在曲線.本題考查了學生的運算求解能力.19、(1)證明見解析;(2)①;②.【解析】

(1)設過的直線交拋物線于,,聯立,利用直線的斜率公式和韋達定理表示出,化簡即可;(2)由(1)知點在軸上,故,設出直線方程,求出交點坐標,因為內心到三角形各邊的距離相等且均為內切圓半徑,列出方程組求解即可.【詳解】(1)設過的直線交拋物線于,,聯立方程組,得:.于是,有:,又,;(2)①由(1)知點在軸上,故,聯立的直線方程:.,又點在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設內切圓半徑為,則.設直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設內切圓的圓心為則,即:,解得:所以,直線的方程為:.【點睛】本題主要考查了拋物線的性質,直線與拋物線相關的綜合問題的求解,考查了學生的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論