




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年潮陽區實驗中學中考數學全真模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣32.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據題意可列方程為()A. B. C. D.3.2017年新設了雄安新區,周邊經濟受到刺激綜合實力大幅躍升,其中某地區生產總值預計可增長到305.5億元其中305.5億用科學記數法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×10114.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數為()A.110° B.115° C.120° D.130°5.如圖,一個梯子AB長2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.9米,則梯子頂端A下落了()A.0.9米 B.1.3米 C.1.5米 D.2米6.如圖,在矩形ABCD中,AB=3,AD=4,點E在邊BC上,若AE平分∠BED,則BE的長為()A. B. C. D.4﹣7.下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四個交通標志圖(黑白陰影圖片)中為軸對稱圖形的是()A. B. C. D.8.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點,已知,則()A. B. C. D.9.若函數與y=﹣2x﹣4的圖象的交點坐標為(a,b),則的值是()A.﹣4 B.﹣2 C.1 D.210.已知地球上海洋面積約為361000000km2,361000000這個數用科學記數法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109二、填空題(本大題共6個小題,每小題3分,共18分)11.計算(﹣a)3?a2的結果等于_____.12.在線段AB上,點C把線段AB分成兩條線段AC和BC,如果,那么點C叫做線段AB的黃金分割點.若點P是線段MN的黃金分割點,當MN=1時,PM的長是_____.13.對于實數a,b,定義運算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,則x的值為_____.14.一個不透明的口袋中有5個紅球,2個白球和1個黑球,它們除顏色外完全相同,從中任意摸出一個球,則摸出的是紅球的概率是_____.15.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.16.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.三、解答題(共8題,共72分)17.(8分)已知動點P以每秒2
cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖(2)中的圖象表示.若AB=6
cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?18.(8分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯結PD、AD.(1)求△ABC的面積;(2)設PB=x,△APD的面積為y,求y關于x的函數關系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.19.(8分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據介紹,這些機器人不僅可以自動規劃最優路線,將包裹準確地放入相應的格口,還會感應避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應購進A種機器人多少臺?20.(8分)先化簡,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根21.(8分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.22.(10分)某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數關系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?23.(12分)平面直角坐標系xOy中(如圖),已知拋物線y=ax2+bx+3與y軸相交于點C,與x軸正半軸相交于點A,OA=OC,與x軸的另一個交點為B,對稱軸是直線x=1,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)拋物線的對稱軸與x軸相交于點M,求∠PMC的正切值;(3)點Q在y軸上,且△BCQ與△CMP相似,求點Q的坐標.24.先化簡:()÷,再從﹣2,﹣1,0,1這四個數中選擇一個合適的數代入求值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據一元二次方程根與系數的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數根x1,x2,那么x1+x2=-ba,x1x2=2、D【解析】分析:根據乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數式表示出相等關系中的各個部分,列出方程即可.3、C【解析】解:305.5億=3.055×1.故選C.4、A【解析】試題分析:首先根據三角形的外角性質得到∠1+∠2=∠4,然后根據平行線的性質得到∠3=∠4求解.解:根據三角形的外角性質,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質以及三角形的外角性質,屬于基礎題,難度較?。?、B【解析】試題分析:要求下滑的距離,顯然需要分別放到兩個直角三角形中,運用勾股定理求得AC和CE的長即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故選B.考點:勾股定理的應用.6、D【解析】
首先根據矩形的性質,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據AE平分∠BED求得ED=AD;利用勾股定理求得EC的長,進而求得BE的長.【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【點睛】本題考查了矩形的性質與角平分線的性質以及勾股定理的應用,解題的關鍵是熟練的掌握矩形的性質與角平分線的性質以及勾股定理的應用.7、B【解析】
根據軸對稱圖形的概念對各選項分析判斷即可得出答案.【詳解】A.不是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項正確;C.不是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項錯誤.故選B.8、C【解析】
連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【詳解】解:如圖,連接AE,
∵AB是直徑,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C=(180°-50°)=65°,
故選:C.【點睛】本題考查了圓周角定理、等腰三角形的判定和性質、線段的垂直平分線的性質定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.9、B【解析】
求出兩函數組成的方程組的解,即可得出a、b的值,再代入求值即可.【詳解】解方程組,把①代入②得:=﹣2x﹣4,整理得:x2+2x+1=0,解得:x=﹣1,∴y=﹣2,交點坐標是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴=﹣1﹣1=﹣2,故選B.【點睛】本題考查了一次函數與反比例函數的交點問題和解方程組等知識點,關鍵是求出a、b的值.10、C【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于1時,n是正數;當原數的絕對值小于1時,n是負數.解答:解:將361000000用科學記數法表示為3.61×1.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣a5【解析】
根據冪的乘方和積的乘方運算法則計算即可.【詳解】解:(-a)3?a2=-a3?a2=-a3+2=-a5.故答案為:-a5.【點睛】本題考查了冪的乘方和積的乘方運算.12、【解析】
設PM=x,根據黃金分割的概念列出比例式,計算即可.【詳解】設PM=x,則PN=1-x,
由得,,
化簡得:x2+x-1=0,
解得:x1=,x2=(負值舍去),
所以PM的長為.【點睛】本題考查的是黃金分割的概念和性質,把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項,叫做把線段AB黃金分割.13、2【解析】
根據新定義運算對式子進行變形得到關于x的方程,解方程即可得解.【詳解】由題意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案為2.【點睛】本題考查了解方程,涉及到完全平方公式、多項式乘法的運算等,根據題意正確得到方程是解題的關鍵.14、【解析】
根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.【詳解】解:由于共有8個球,其中紅球有5個,則從袋子中隨機摸出一個球,摸出紅球的概率是.故答案為.【點睛】本題考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.15、1【解析】
在同樣條件下,大量反復試驗時,隨機事件發生的頻率逐漸穩定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.
故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據紅球的頻率得到相應的等量關系.16、1【解析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.三、解答題(共8題,共72分)17、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】
(1)根據題意得:動點P在BC上運動的時間是4秒,又由動點的速度,可得BC的長;(2)由(1)可得BC的長,又由AB=6cm,可以計算出△ABP的面積,計算可得a的值;(3)分析圖形可得,甲中的圖形面積等于AB×AF-CD×DE,根據圖象求出CD和DE的長,代入數據計算可得答案,(4)計算BC+CD+DE+EF+FA的長度,又由P的速度,計算可得b的值.【詳解】(1)由圖象知,當t由0增大到4時,點P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由圖象知CD=4㎝,DE=6㎝,則EF=2㎝,AF=14㎝∴圖1中的圖象面積為6×14-4×6=60㎝2;(4)圖1中的多邊形的周長為(14+6)×2=40㎝b=(40-6)÷2=17秒.18、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據cosB=求得BH的長,從而根據已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據,代入相關的量即可得;(3)分情況進行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當∠PAD=90°時,,解得x=,綜上所述,PB=或.【點睛】本題考查了相似三角形的判定與性質、底在同一直線上且高相等的三角形面積的關系等,結合圖形及已知選擇恰當的知識進行解答是關鍵.19、(1)A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹(2)最多應購進A種機器人100臺【解析】
(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,根據題意列方程組即可得到結論;(2)設最多應購進A種機器人a臺,購進B種機器人(200?a)臺,由題意得,根據題意兩不等式即可得到結論.【詳解】(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,由題意得,,解得,,答:A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹;(2)設最多應購進A種機器人a臺,購進B種機器人(200﹣a)臺,由題意得,30a+40(200﹣a)≥7000,解得:a≤100,則最多應購進A種機器人100臺.【點睛】本題考查了二元一次方程組,一元一次不等式的應用,正確的理解題意是解題的關鍵.20、2m2+2m+5;1;【解析】
先利用完全平方公式化簡,再去括號合并得到最簡結果,把已知等式變形后代入值計算即可.【詳解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【點睛】此題考查了整式的化簡求值以及方程的解,利用整體代換思想可使運算更簡單.21、(1)作圖見解析;(2)證明見解析.【解析】
(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點作直線,交AC于點D,AB于點E,直線DE就是所要作的AB邊上的中垂線;
(2)根據線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據等邊對等角的性質求出∠ABD=∠A=30°,然后求出∠CBD=30°,從而得到BD平分∠CBA.【詳解】(1)解:如圖所示,DE就是要求作的AB邊上的中垂線;(2)證明:∵DE是AB邊上的中垂線,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【點睛】考查線段的垂直平分線的作法以及角平分線的判定,熟練掌握線段的垂直平分弦的作法是解題的關鍵.22、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據平移的性質得到DF∥AC,所以由平行線的性質、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數關系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當D運動到AB中點時,四邊形CDBF是菱形,根據“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據有一內角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寵物烘焙營銷活動方案
- 小學創意紅色活動方案
- 安陽沃爾瑪活動策劃方案
- 宗祠助學活動策劃方案
- 安防公司廣告策劃方案
- 富德工會活動方案
- 富強隊會活動方案
- 寵物人氣活動方案
- 尋訪企業傳奇活動方案
- 寺廟跳舞活動方案
- 2009-2022歷年河北省公安廳高速交警總隊招聘考試真題含答案2022-2023上岸必備帶詳解版4
- 六年級信息技術下冊《走進人工智能》優質課獲獎課件
- 工程開工報告表
- 勞動法課件(完整版)
- 營運車輛智能視頻監控系統管理制度范本及動態監控管理制度
- 完整版:美制螺紋尺寸對照表(牙數、牙高、螺距、小徑、中徑外徑、鉆孔)
- 偏頭痛PPT課件(PPT 43頁)
- (完整版)入河排污口設置論證基本要求
- 10kV架空線路施工方案
- 2022年人教版小學數學一年級下冊期中測試卷二(含答案)
- 關于恒溫恒濕項目裝修方案及裝修細部做法
評論
0/150
提交評論