湖北省棗陽市2022-2023學年數學九年級第一學期期末調研模擬試題含解析_第1頁
湖北省棗陽市2022-2023學年數學九年級第一學期期末調研模擬試題含解析_第2頁
湖北省棗陽市2022-2023學年數學九年級第一學期期末調研模擬試題含解析_第3頁
湖北省棗陽市2022-2023學年數學九年級第一學期期末調研模擬試題含解析_第4頁
湖北省棗陽市2022-2023學年數學九年級第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.二次函數y=(x-1)2-5的最小值是()A.1 B.-1 C.5 D.-52.如圖,,兩條直線與三條平行線分別交于點和.已知,則的值為()A. B. C. D.3.如圖,在平面直角坐標系中,正方形ABCD頂點B(﹣1,﹣1),C在x軸正半軸上,A在第二象限雙曲線y=﹣上,過D作DE∥x軸交雙曲線于E,連接CE,則△CDE的面積為()A.3 B. C.4 D.4.如表記錄了甲、乙、丙、丁四名跳高運動員最近幾次選拔賽成績的平均數與方差:甲乙丙丁平均數(cm)181186181186方差3.53.56.57.5根據表中數據,要從中選擇一名成績好且發揮穩定的運動員參加比賽,應該選擇()A.甲 B.乙 C.丙 D.丁5.若2a=3b,則下列比列式正確的是()A. B. C. D.6.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°7.某商品經過連續兩次降價,售價由原來的每件25元降到每件16元,則平均每次降價的百分率為().A.; B.; C.; D..8.△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為()A. B. C. D.9.如圖,在⊙O中,弦AB的長為8,圓心O到AB的距離為3,則⊙O的半徑為()A.10 B.8 C.7 D.510.設,,是拋物線上的三點,則,,的大小關系為()A. B. C. D.11.在平面直角坐標系中,已知點A(﹣4,2),B(﹣6,﹣4),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)12.如圖,AB⊥OB,AB=2,OB=4,把∠ABO繞點O順時針旋轉60°得∠CDO,則AB掃過的面積(圖中陰影部分)為()A.2 B.2π C.π D.π二、填空題(每題4分,共24分)13.用紙板制作了一個圓錐模型,它的底面半徑為1,高為,則這個圓錐的側面積為_________.14.如圖,邊長為1的小正方形構成的網格中,半徑為1的⊙O在格點上,則∠AED的正切值為_____.15.如圖,在邊長為2的正方形ABCD中,以點D為圓心,AD長為半徑畫,再以BC為直徑畫半圓,若陰影部分①的面積為S1,陰影部分②的面積為S2,則圖中S1﹣S2的值為_____.(結果保留π)16.如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進20海里到達B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.17.已知關于x方程x2﹣3x+a=0有一個根為1,則方程的另一個根為_____.18.如圖,正方形網格中,5個陰影小正方形是一個正方體表面展開圖的一部分.現從其余空白小正方形中任取一個涂上陰影,則圖中六個陰影小正方形能構成這個正方體的表面展開圖的概率是______

.三、解答題(共78分)19.(8分)已知:在同一平面直角坐標系中,一次函數與二次函數的圖象交于點.(1)求,的值;(2)求二次函數圖象的對稱軸和頂點坐標.20.(8分)感知定義在一次數學活動課中,老師給出這樣一個新定義:如果三角形的兩個內角α與β滿足α+2β=90°,那么我們稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分線.①證明△ABD是“類直角三角形”;②試問在邊AC上是否存在點E(異于點D),使得△ABE也是“類直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.類比拓展(2)如圖2,△ABD內接于⊙O,直徑AB=10,弦AD=6,點E是弧AD上一動點(包括端點A,D),延長BE至點C,連結AC,且∠CAD=∠AOD,當△ABC是“類直角三角形”時,求AC的長.21.(8分)22.(10分)(1)解方程:(2)如圖已知⊙的直徑,弦與弦平行,它們之間的距離為7,且,求弦的長.23.(10分)如圖,一次函數y=﹣x+4的圖象與反比例函數y=(k為常數,且k≠0)的圖象交于A(1,a),B(3,b)兩點.(1)求反比例函數的表達式(2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(3)求△PAB的面積.24.(10分)某水果經銷商到水果種植基地采購葡萄,經銷商一次性采購葡萄的采購單價(元/千克)與采購量(千克)之間的函數關系圖象如圖中折線所示(不包括端點).(1)當時,寫出與之間的函數關系式;(2)葡萄的種植成本為8元/千克,某經銷商一次性采購葡萄的采購量不超過1000千克,當采購量是多少時,水果種植基地獲利最大,最大利潤是多少元?25.(12分)已知函數,與x成正比例,與x成反比例,且當時,;當時,.求y與x的函數表達式.26.在學校組織的科學素養競賽中,每班參加比賽的人數相同,成績分為、、、四個等級,其中相應等級的得分依次為分,分,分,分.馬老師將九年級一班和二班的成績整理并繪制成如下的統計圖:請你根據以上提供的信息解答下列問題:(1)此次競賽中二班成績在分及其以上的人數是_______人;(2)補全下表中、、的值:平均數(分)中位數(分)眾數(分)方差一班二班(3)學校準備在這兩個班中選一個班參加市級科學素養競賽,你建議學校選哪個班參加?說說你的理由.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據頂點式解析式寫出即可.【詳解】二次函數y=(x-1)2-1的最小值是-1.故選D.【點睛】本題考查了二次函數的最值問題,比較簡單.2、C【分析】由得設可得答案.【詳解】解:,,設則故選C.【點睛】本題考查的是平行線分線段成比例,比例線段,掌握這兩個知識點是解題的關鍵.3、B【分析】作輔助線,構建全等三角形:過A作GH⊥x軸,過B作BG⊥GH,過C作CM⊥ED于M,證明△AHD≌△DMC≌△BGA,設A(x,﹣),結合點B的坐標表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,進而根據三角形面積公式可得結論.【詳解】過A作GH⊥x軸,過B作BG⊥GH,過C作CM⊥ED于M,設A(x,﹣),∵四邊形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴點E的縱坐標為3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE?CM=××3=.故選:B.【點睛】本題主要考查反比例函數圖象和性質與幾何圖形的綜合,掌握“一線三垂直”模型是解題的關鍵.4、B【分析】根據平均數與方差的意義解答即可.【詳解】解:,乙與丁二選一,又,選擇乙.【點睛】本題考查數據的平均數與方差的意義,理解兩者所代表的的意義是解答關鍵.5、C【分析】根據比例的性質即可得到結論.【詳解】解:∵2a=3b,∴故選:C.【點睛】此題主要考查比例的性質,解題的關鍵是熟知其變形.6、C【分析】由切線的性質可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質.7、A【分析】可設降價的百分率為,第一次降價后的價格為,第一次降價后的價格為,根據題意列方程求解即可.【詳解】解:設降價的百分率為根據題意可列方程為解方程得,(舍)∴每次降價得百分率為故選A.【點睛】本題考查了一元二次方程的在銷售問題中的應用,正確理解題意,找出題中等量關系是解題的關鍵.8、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長;過C作CM⊥AB,交AB于點M,由垂徑定理可得M為AE的中點,在Rt△ACM中,根據勾股定理得AM的長,從而得到AE的長.【詳解】解:在Rt△ABC中,

∵AC=3,BC=4,

∴AB==1.

過C作CM⊥AB,交AB于點M,如圖所示,

由垂徑定理可得M為AE的中點,

∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,

∴CM=,

在Rt△ACM中,根據勾股定理得:AC2=AM2+CM2,即9=AM2+()2,

解得:AM=,

∴AE=2AM=.

故選:C.【點睛】本題考查的是垂徑定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.9、D【分析】根據垂徑定理可得出AE的值,再根據勾股定理即可求出答案.【詳解】解:∵OE⊥AB,∴AE=BE=4,∴.故選:D.【點睛】本題考查的知識點是垂徑定理,根據垂徑定理得出AE的值是解此題的關鍵.10、A【分析】根據二次函數的性質得到拋物線y=-(x+1)2+k(k為常數)的開口向下,對稱軸為直線x=﹣1,然后根據三個點離對稱軸的遠近判斷函數值的大?。驹斀狻拷猓骸邟佄锞€y=-(x+1)2+k(k為常數)的開口向下,對稱軸為直線x=﹣1,而A(2,y1)離直線x=﹣1的距離最遠,C(﹣2,y3)點離直線x=1最近,∴.故選A.【點睛】本題考查了二次函數圖象上點的坐標特征:二次函數圖象上點的坐標滿足其解析式.也考查了二次函數的性質.11、D【解析】根據在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k,即可求得答案.【詳解】∵點A(-4,2),B(-6,-4),以原點O為位似中心,相似比為,把△ABO縮小,∴點A的對應點A′的坐標是:(-2,1)或(2,-1).故選D.【點睛】此題考查了位似圖形與坐標的關系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標比等于±k.12、C【解析】根據勾股定理得到OA,然后根據邊AB掃過的面積==解答即可得到結論.【詳解】如圖,連接OA、OC.∵AB⊥OB,AB=2,OB=4,∴OA==,∴邊AB掃過的面積====.故選C.【點睛】本題考查了扇形的面積的計算,勾股定理,熟練掌握扇形的面積公式是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據圓錐的側面積公式計算即可得到結果.【詳解】解:根據題意得:S=π×1×=3π,

故填:3π.【點睛】此題考查了圓錐的計算,熟練掌握圓錐的側面積公式是解本題的關鍵.14、.【詳解】解:根據圓周角定理可得∠AED=∠ABC,所以tan∠AED=tan∠ABC=.故答案為:.【點睛】本題考查圓周角定理;銳角三角函數.15、π【分析】如圖,設圖中③的面積為S1.構建方程組即可解決問題.【詳解】解:如圖,設圖中③的面積為S1.由題意:,可得S1﹣S2=π,故答案為π.【點睛】本題考查扇形的面積、正方形的性質等知識,解題的關鍵是學會利用參數構建方程組解決問題.16、10【詳解】試題分析:BD設為x,因為C位于北偏東30°,所以∠BCD=30°在RT△BCD中,BD=x,CD=3x又∵∠CAD=30°,在RT△ADC中,AB=20,AD=20+x,又∵△ADC∽△CDB,所以ADCD即:(3x)2=x(20+x),求出x=10,故考點:1、等腰三角形;2、三角函數17、1【解析】分析:設方程的另一個根為m,根據兩根之和等于-,即可得出關于m的一元一次方程,解之即可得出結論.詳解:設方程的另一個根為m,根據題意得:1+m=3,解得:m=1.故答案為1.點睛:本題考查了根與系數的關系,牢記兩根之和等于-是解題的關鍵.18、【分析】首先確定所求的陰影小正方形可能的位置總數目,除以剩余空白部分的正方形的面積個數即為所求的概率.【詳解】解:從陰影下邊的四個小正方形中任選一個,就可以構成正方體的表面展開圖,∴能構成這個正方體的表面展開圖的概率是.故答案為:.【點睛】本題將概率的求解設置于正方體的表面展開圖中,考查學生對簡單幾何概型的掌握情況,既避免了單純依靠公式機械計算的做法,又體現了數學知識在現實生活、甚至娛樂中的運用,體現了數學學科的基礎性.用到的知識點為:概率=相應的面積與總面積之比;“一,四,一”組合類型的6個正方形能組成正方體.三、解答題(共78分)19、(1),;(2)對稱軸為直線,頂點坐標.【分析】(1)把A點坐標代入一次函數解析式可求得m的值,得出A點坐標,再代入二次函數解析式可得c;(2)將(1)中得出的二次函數的解析式化為頂點式可求得其頂點坐標和對稱軸.【詳解】解:(1)∵點A在一次函數圖象上,∴m=-1-4=-5,∵點A在二次函數圖象上,∴-5=-1-2+c,解得c=-2;(2)由(1)可知二次函數的解析式為:,∴二次函數圖象的對稱軸為直線x=1,頂點坐標為(1,-1).【點睛】本題考查的知識點是一次函數的性質以及二次函數的性質,熟記各知識點是解此題的關鍵.20、(1)①證明見解析;②CE=;(2)當△ABC是“類直角三角形”時,AC的長為或.【分析】(1)①證明∠A+2∠ABD=90°即可解決問題.②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”,證明△ABC∽△BEC,可得,由此構建方程即可解決問題.(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°時,作點D關于直線AB的對稱點F,連接FA,FB.則點F在⊙O上,且∠DBF=∠DOA.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,可證∠C+2∠ABC=90°,利用相似三角形的性質構建方程即可解決問題.【詳解】(1)①證明:如圖1中,∵BD是∠ABC的角平分線,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD為“類直角三角形”;②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°,∴∠A=∠CBE,∴△ABC∽△BEC,∴,∴CE=,(2)∵AB是直徑,∴∠ADB=90°,∵AD=6,AB=10,∴BD=,①如圖2中,當∠ABC+2∠C=90°時,作點D關于直線AB的對稱點F,連接FA,FB,則點F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共線,∵∠C+∠ABC+∠ABF=90°,∴∠C=∠ABF,∴△FAB∽△FBC,∴,即,∴AC=.②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴,即,∴CD=(AC+6),在Rt△ADC中,[(ac+6)]2+62=AC2,∴AC=或﹣6(舍棄),綜上所述,當△ABC是“類直角三角形”時,AC的長為或.【點睛】本題主要考查圓綜合題,考查了相似三角形的判定和性質,“類直角三角形”的定義等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,學會利用參數構建方程解決問題.21、【分析】移項,利用配方法解方程即可.【詳解】移項得:,配方得:,∴,∴.【點睛】本題主要考查了解一元二次方程-配方法,正確應用完全平方公式是解題關鍵.22、(1);(2)1.【分析】(1)先移項,然后利用因式分解法解方程即可(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,根據垂徑定理求出AM,根據勾股定理求出OM,根據題意求出ON,根據勾股定理、垂徑定理計算即可.【詳解】(1)解:∵或(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,則∵∴點在同一條直線上,在中∴在中,∵∴【點睛】本題考查了解一元二次方程、垂徑定理和勾股定理的應用,掌握垂直于弦的直徑平分這條弦是解題的關鍵.23、(1)反比例函數的表達式y=,(2)點P坐標(,0),(3)S△PAB=1.1.【解析】(1)把點A(1,a)代入一次函數中可得到A點坐標,再把A點坐標代入反比例解析式中即可得到反比例函數的表達式;(2)作點D關于x軸的對稱點D,連接AD交x軸于點P,此時PA+PB的值最小.由B可知D點坐標,再由待定系數法求出直線AD的解析式,即可得到點P的坐標;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點A(1,a)代入一次函數y=﹣x+4,得a=﹣1+4,

解得a=3,

∴A(1,3),

點A(1,3)代入反比例函數y=,

得k=3,

∴反比例函數的表達式y=,

(2)把B(3,b)代入y=得,b=1∴點B坐標(3,1);作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,

∴D(3,﹣1),設直線AD的解析式為y=mx+n,

把A,D兩點代入得,,

解得m=﹣2,n=1,

∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,

∴點P坐標(,0),(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.點晴:本題是一道一次函數與反比例函數的綜合題,并與幾何圖形結合在一起來求有關于最值方面的問題.此類問題的重點是在于通過待定系數法求出函數圖象的解析式,再通過函數解析式反過來求坐標,為接下來求面積做好鋪墊.24、(1);(2)一次性采購量為800千克時,蔬

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論