




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
ArtificialIntelligenceFall2008FrankHadlockDefinitionsofAIThestudyofrepresentationandsearchthroughwhichintelligentactivitycanbeenactedonamechanicaldevice.Thestudyofproblemsatwhichhumanbeingsarecurrentlymoreadeptthancomputersatsolvingandthetranslationandimprovementofhumansolutionsintoformswhichcanbeimplementedonacomputer.PhysicalsymbolsystemhypothesisThephysicalsymbolsystemhypothesis(PSSH),firstformulatedbyNewellandSimonintheirTuringAwardpaper,1statesthat“aphysicalsymbolsystem[suchasadigitalcomputer,forexample]hasthenecessaryandsufficientmeansforintelligentaction.”Thehypothesisimpliesthatcomputers,whenweprovidethemwiththeappropriatesymbol-processingprograms,willbecapableofintelligentaction.Italsoimplies,asNewellandSimonwrote,that“thesymbolicbehaviorofmanarisesbecausehehasthecharacteristicsofaphysicalsymbolsystem.”HistoryGraphtheory&statespacerepresentation(Euler)Booleanalgebra–propositionalcalculus(Boole)Predicatecalculus–(Frege)DescartesDiscourseTuring’sTestPhysicalSymbolSystemHypothesisConnectionism
Discourse-DescartesIfthereweremachineswhichborearesemblancetoourbodiesandimitatedouractionsascloselyaspossibleforallpracticalpurposes,weshouldstillhavetwoverycertainmeansofrecognizingthattheywerenotrealmen.Thefirstisthattheycouldneverusewords,orputtogethersigns,aswedoinordertodeclareourthoughtstoothers.Forwecancertainlyconceiveofamachinesoconstructedthatitutterswords,andevenutterswordsthatcorrespondtobodilyactionscausingachangeinitsorgans.…Butitisnotconceivablethatsuchamachineshouldproducedifferentarrangementsofwordssoastogiveanappropriatelymeaningfulanswertowhateverissaidinitspresence,asthedullestofmencando.Secondly,eventhoughsomemachinesmightdosomethingsaswellaswedothem,orperhapsevenbetter,theywouldinevitablyfailinothers,whichwouldrevealthattheyareactingnotfromunderstanding,butonlyfromthedispositionoftheirorgans.Forwhereasreasonisauniversalinstrument,whichcanbeusedinallkindsofsituations,theseorgansneedsomeparticularaction;henceitisforallpracticalpurposesimpossibleforamachinetohaveenoughdifferentorganstomakeitactinallthecontingenciesoflifeinthewayinwhichourreasonmakesusact.(TranslationbyRobertStoothoff)TuringTestTheTuringtestisaproposalforatestofamachine'sabilitytodemonstrateintelligence.DescribedbyAlanTuringinthe1950paper"ComputingMachineryandIntelligence,"itproceedsasfollows:ahumanjudgeengagesinanaturallanguageconversationwithonehumanandonemachine,eachofwhichtrytoappearhuman;ifthejudgecannotreliablytellwhichiswhich,thenthemachineissaidtopassthetest.Inordertotestthemachine'sintelligenceratherthanitsabilitytorenderwordsintoaudio,theconversationislimitedtoatext-onlychannelsuchasacomputerkeyboardandscreen(Turingoriginallysuggestedateletypemachine,oneofthefewtext-onlycommunicationsystemsavailablein1950).AIApplicationAreasGamePlayingAutomatedReasoningExpertSystemsNaturalLanguageUnderstandingModelingHumanPerformancePlanningandRoboticsLanguagesforAI(Clips,LispandProlog)MachineLearningNeuralnetsandGeneticAlgorithmsIntelligentAgentsBoardgamescanberepresentedbyausuallylargebutfinitesetofboardconfigurationsorstates.ThesquaresofTicTacToecanbenumbered1..9andeachconfigurationasasequenceover{H,C,B}wheremanyofthe39cannotoccurbecauseoforderofplay.AstateBCBBBBBBBmaybefollowedbyanyofeightstatesobtainedbyreplacinganyoftheeightBsbyanH.BBBBBBBBBistheinitialstateandanystatewitharoworcolumnordiagonalconsistingofallCsisawinningstatefortheComputer.Ifthecomputercanfindapathfromstarttowinningstate,thepathcorrespondstoawinforthecomputerandfindingsuchapathconstitutesanexampleofartificialintelligence.GamePlayingandStateSpaceSearchGraphtheory:ThecityofK?nigsberg
Thecityisdividedbyariver.Therearetwoislandsattheriver.Thefirstislandisconnectedbytwobridgestobothriverbanksandisalsoconnectedbyabridgetotheotherisland.Thesecondislandtwobridgeseachconnectingtooneriverbank.Question:Isthereawalkaroundthecitythatcrosseseachbridgeexactlyonce?SwissmathematicianLeonhardEulerinventedgraphtheorytosolvethisproblem.ThecityofK?nigsbergGraphoftheK?nigsbergbridgesystemEulerCircuitsAgraphhasanEulercircuitiffitisconnectedandeveryvertexisofevendegree.Necessity–Eulercircuitentersavertexeachtimeonanewedgeandleavesthevertexonanewedge.Sovertexhasdegree2*numberoftimesoncircuitSufficiency–Pickstartingvertexandtraversegraph,eachtimepickingnewedge.Canonlybeblockedatstart.EitherhaveEulercircuitorcanpickvertexwithunusededgeoncircuitandbuildsubtourstartingwithit.Splicesubtourin.Eventuallywillhaveusedalledgesonce.StatespacesearchRepresentedbyafour-tuple[N,A,S,GD],where:Nistheproblemspace
Aisthesetofarcs(orlinks)betweennodes.Thesecorrespondtotheoperators.
SisanonemptysubsetofN.Itrepresentsthestartstate(s)oftheproblem.
StateSpaceSearchcontinuedGDisanonemptysubsetofN.Itrepresentsthegoalstate(s)oftheproblem.ThestatesinGDaredescribedusingeither:
ameasurablepropertyofthestates
apropertyofthepathdevelopedinthe
search(asolutionpathisapathfrom
nodeStoanodeinGD)The8-puzzleproblemasstatespacesearchstates:possibleboardpositionsoperators:oneforslidingeachsquareineachoffourdirections,
or,better,oneformovingtheblanksquareineachoffourdirectionsinitialstate:somegivenboardpositiongoalstate:somegivenboardpositionNote:the“solution”isnotinterestinghere,weneedthepath.EightPuzzle1437658214376258Statespaceofthe8-puzzlegeneratedby“moveblank”operationsTravelingsalespersonproblemasstatespacesearchThesalespersonhasncitiestovisitandmustthenreturnhome.Findtheshortestpathtotravel.statespace:operators:initialstate:goalstate:AutomatedReasoningandTheoremProvingLogicsystemsbeganwithPropositionalCalculusinwhichdeclarativestatementswithatruthvalueoftrueorfalsearerepresentedbyP,Q,R,etcandcombinedwithlogicoperatorsOr,And,Not,If.Asentencesuchas“BillmusttakeCSC2020”isrepresentedbyletterPandistrueorfalse.PropositionalCalculuswasextendedtoPredicateCalculusbyaddingPredicates(relations),variables,andquantifiers(ForAllandThereExists).Asentencesuchas“EveryCSmajormusttakeCSC2020”isrepresentedby“(ForAllX)(CSMajor(X)MustTake(CSC2020))”GivensomefactsexpressedineitherPropositionalorPredicateCalculus,newfactsorknowledgeisinferredbyinferencerulessuchasmodusponensorresolution.Ifthecomputercanfindapathfromgivenfactstoanewtheorem,thepathcorrespondstoaproofandfindingsuchapathconstitutesanexampleofartificialintelligencePropositionalLogicAdeclarativestatementsuchas“BillisaCSstudent”hasatruthvalueofTorFandisdenotedbyP(atruthvariable)Propositionsmaybecombinedwithlogicaloperatorsandthecompositestatementhasvalueasshownbelow.PQistrueifeitherPorQaretrueandfalseifbotharefalsePQistrueifbothPandQaretrueandfalseifeitherisfalse.?PistrueifPisfalseandfalseifPistruePQistrueifPandQhavethesametruthvalueandfalseiftheirvaluesdifferPQisfalseifPistrueandQisfalseandtrueotherwise.Atautologyisalwaystrue.PQ?PQisatautology.P(QR)
(PQ)(PR)isatautology.RulesofInferenceP,PQthenQ-modusponens?Q,PQthen?P-modustollensExpertSystemsGeneralproblemsolvinghasbeenattemptedinAIbutwithoutsuccess.Instead,systemshavebeendevelopedwhichspecializeindomain-specificknowledgesuchasmedicine.Peoplewhoworkintheseareasarecalleddomainexpertsandsolveproblemsbyusingdomain-specificruleswhichareappliedtofactsorknowledgeintheknowledgebase.Generalproblemclassessolvablebyexpertsystems(whichreplacethedomainexperts)arediagnosticproblems(backwardchaining)anddesignorconfigurationproblems(forwardchaining).Whenapathisfoundfromaconditionbackwardtoasetoffactscausingthecondition(orviseversa),thepathcorrespondstoadiagnosis(ordesign)andfindingsuchapathconstitutesanexampleofartificialintelligenceNaturalLanguageUnderstanding&SemanticsTranslationfromtextinonenaturallanguagetoanotherrequiresmorethanvocabularysubstitutionbecauseoftheinherentambiguityofnaturallanguages.Toresolvethisambiguityrequirescontextualknowledgeintheformofaworldmodel.Asanexample,apunctuationsymbol“,”canhavethemeaningofalistseparator,orbeusedinplaceof“then”,orbeusedtodelimitadanglingmodifier.Anotherexampleisthetransaltionof“hydraulicram”inEnglishintotheRussianequivalentof“watergoat”.Inthislastexample,aworldmodelwouldsaythatthereissuchananimalasa“waterbuffalo”butnota“watergoat”.TranslationusuallyinvolvessyntacticanalysisfollowedbysemanticanalysisandatranslationpathfromsourcetotargetconstitutesanexampleofartificialintelligenceModelingHumanPerformanceMuchofartificialintelligenceisconcernedwithduplicatingorsurpassinghumaningenuityonthecomputerwithnoconcernwithhowhumansperform.Cognitivemodelingisconcernedwithusingcomputerstodeterminehumanperformance.Computerbasedtutoringisanexamplewhichhasbeenappliedtotutoringalgebrastudentstosolvewordproblems.CognitivemodelingsystemssuchasACTmodelhumanperformancewithrulesorproductions.Thetutorinteractswiththestudentbyposingaproblemandthenposingquestions,attemptingtoguidethestudenttoacorrectsolution.Byexaminingtheresponses,thetutoreitherposesanotherquestioncorrespondingtoacorrectstepinthesolution,ordiagnosesanincorrect“buggy”rulebeingusedbythestudent.Inthiscase,thetutorrevertsbacktoapreviousconceptneededinthecorrectsolution.ApathfromproblemstatementtoanyintermediatestateconstitutesanexampleofartificialintelligencePlanningandRoboticsDiscussionofplanningandroboticshereisconfinedtomotionplanningintwodimensions.AbasicassumptioninthisdiscussionisthattheEuclideancoordinatesareavailableforthepositionoftherobot,ofobstacles,andofgoals.Motionplanningisaccomplishedbyworkingwiththestatespaceofpositionswherepositionsareconnectedbyanedgeifthereisnointerveningobstacle.Apathfrominitialpositiontoagoalpositionisasolutiontotheproblemofmotionplanningthatconstitutesanexampleofartificialintelligence.CognitiveAlgebraTutorsAlgebraclassmaybelessdifficultandabitmorefunthesedays,thankstoresearchonhowhumancognitionworks.DevelopedovertwodecadesbypsychologistJohnAnderson,theAdaptiveCharacterofThought(ACT-R)theoryisaframeworkforunderstandinghowwethinkaboutandattackproblems,includingmathequations.Thetheoryreflectsourunderstandingohumancognitionbasedonnumerousfactsderivedfrompsychologicalexperiments.ACT-Rsuggeststhatcomplexcognitionarisesfromaninteractionofproceduralanddeclarativeknowledge.Declarativeknowledgeisafairlydirectencodingoffacts(suchasWashington,DCisthecapitaloftheUnitedStates,5+3=8);proceduralknowledgeisafairlydirectencodingofhowwedothings(suchhowtodriveorhowtoperformaddition).AccordingtotheACT-Rtheory,thepowerofhumancognitiondependsonhowpeoplecombinethesetwotypesofknowledge.SignificanceTheACT-Rtheoryprovidesinsightsintohowstudentslearnnewskillsandconcepts,and,indoingsoallowsteacherstoseewherestudentsmayneedextrapracticetomasterthenewwork.PracticalApplicationDr.AndersonandcolleaguesatCarnegieMellonUniversityhaveusedthisresearchtodevelopcognitivetutors,computer-tutoringprogramsthatincorporatetheACT-Rtheoryintheteachingofalgebra,geometryandintegratedmath.Thetutorsarebasedoncognitivemodelsthattaketheformofcomputersimulationsthatarecapableofsolvingthetypesofproblemsthatstudentsareaskedtosolve.Thetutorsincorporatethedeclarativeandproceduralknowledgeimbeddedintheinstructionandmonitorstudents’problemsolvingtodeterminewhatthestudentsknowanddon’tknow.Thisallowsinstructiontobedirectedatwhatstillneedstobemasteredandhelpsinsurethatstudents’learningtimeisspentinamoreefficientmanner.Studentsworkonaconceptuntilitisfullyunderstood.Studentswhoarehavingconceptualproblemswillbedrilledoninthatarea,whilethosewhohavemasteredtheconceptmoveontootherareas.Themostwidelyusedcognitivetutorprogram–nowknownasCarnegieLearning’sCognitiveTutor-combinessoftware-based,individualizedcomputerlessonswithcollaborative,real-worldproblem-solvingactivities.Theprogramnowservesmorethan150,000studentsinmostofthenation’slargestschooldistricts.Fieldstudieshaveshowndramaticstudentachievementgainswheretheprogramisinuse.In2003,theU.S.DepartmentofDefenseSchoolsawardedacontractthatwilluseCognitiveTutormathematicscurriculainits224publicschoolsin21districtslocatedin14foreigncountries,sevenstates,GuamandPuertoRico.Theseschoolshaveapproximately8,800teachersserving106,000students.CitedResearchAnderson,J.R.(1983).Thearchitectureofcognition.Cambridge:MA:HarvardUniversityPress.Anderson,J.R.(1993).RulesoftheMind.Hillsdale,NJ:Erlbaum.LispLispisthefirstlanguageusedinArtificialIntelligenceandisstructuredsothatalistiseitherdataorafunctioncall.Inthecaseofafunctioncall,Lispusesprefixnotationwhichmeansthatthefirstlistitemisthenameofthefunctionandtheremainingitemsarethearguments.Lispindicatesvariablesbyaquestionmark.Toillustrate(forall?x(implies(cs_student?x)(must_take?xdata_structures)))(cs_studentbill)Wouldyield(must_takebilldata_structures)PrologPrologisalogicprogramminglanguagebasedonpredicatelogic.Prologusescapitallettersforvariablesandlowercaselettersforpredicatesandconstantsandreversestheorderforimplication.InsteadofwritingPQ,PrologordersimplicationasQ:-P.Acommaisusedtoseparateargumentsandforconjunctionwithaperiodmarkingtheendofasentence.Toillustrate,cs_student(bill).must_take(data_structures,X):-cs_student(X)Thefirstsentenceassertsafactthat“bill”isacs_studentwhilethesecondsentenceassertsthatanycs_studentmusttakedatastructures.Prologislaunchedbyagoalsuchas:-must_take(data_structures,Y)whichwouldreturnmust_take(data_structures,bill)CLIPS
Clipsorganizesknowledgebyusingnamedfacttemplatesconsistingofnamedslots.AnexampleisthePAYtemplatewithslotsforhoursandpayrate.Thedeffactsstatementcreatesinitialfactsaccolrdingtoselectedtemplates.Anexampleisthepayrollstatementwhichassignsaninitialfactof44hoursandofarateof$8/hour.
FactList(deftemplatepay(slothours)(slotrate))(deffactspayroll(pay(hours44)(rate8))(statusincomplete))CLIPS
Clipsinfersnewknowledgebyusingnamedruletemplatesconsistingofanantecedentwhichmustmatchfactsinthefactlistandaconsequentwhichaddsormodifiesfacts.FactListRuleList(defrulecalculate_basic?p<-(pay(hours?h)(rate?r))(test(<=?h40))=>(assert(basic_pay(*?h?r)))(retract?p))CLIPSRuleListRuleList(defrulecalculate_basic?p<-(pay(hours?h)(rate?r))(test(<=?h40))=>(assert(basic_pay(*?h?r)))(retract?p))(defrulecalculate_overtime(pay(hours?h)(rate?r))(test(>?h40))(statusincomplete)=>(assert(overtime(*(-?h40)(*?r1.5)))))(defrulecalculate_regular(pay(hours?h)(rate?r))(statusincomplete)(test(>?h40))=>(assert(regular(*40?r))))(defrulecalculate_adjustedgross(regular?r)(overtime?o)(statusincomplete)=>(assert(adjusted_gross(+?r?o)))(assert(statusdone)))(deftemplatepay(slothours)(slotrate))(deffactspayroll(pay(hours44)(rate8))(statusincomplete))NeuralNetsAnartificialneuronconsistsofinputsxi,I=1..n,whichhaveavalueof0or1.Eachinputxicancollectavaluefromtheenvironmentorfromtheoutputofanotherneuronandanassociatedweightwi.Aneuronisactivatedifthesumoftheweightedinputswixiexceedsathresholdfunctionf.Theneuronoutputsa1ifactivatedandotherwiseoutputsa0.Twosetsofpointsin2dimensionalspacearelinearlyseparableiftheycanbeseparatedbyastraightline.Inthiscase,thepointscanbeclassifiedbyasingleneuronwhichoutputsa0forpointsononesideofthelineanda1forpointsontheotherside.Thisclassificationisanexampleofartificialintelligence.ThepointsetsclassifiedbyalogicalOrgateandthoseclassifiedbyalogicalAndgatearelinearlyseparablebutnotthoseclassifiedbyanExclusiveOr.GeneticAlgorithmsGeneticalgorithmsarebasedonabiologicalmetaphorofevolvingsolutionstoaproblem.Thesolutionsarestringsoversomealphabetandarereferredtoasgenes.GivenaninitialpopulationP0,eachmembergeneisevaluatedbyafitnessfunctionspecifictotheproblemForexample,fortheknapsackfunction,thegenemightbealistofobjectindicestobeincludedandthefitnessmightbethewastedspaceintheknapsack.Membersareselectedbasedonfitnessandoffspringarecreatedusingcrossoverandmutationoperatorstoformthenextpopulation.TheprocesshaltsaftersomanypopulationsandthemostfitmemberofthefinalpopulationisselectedasthesolutiontotheproblemRepresentationandSearchRepresentationofProblemInformationPropositional&PredicateLogicSemanticnetworksStateSpacesetofproblemstatesalongwithtransitionsbetweenstatesandasetofstartstatesandgoalstates.apathfromstarttogoalisasolution
SearchTechniquesforfindingasolution
EightPuzzleRepresentation–Thesquaresoftheeightpuzzlecanberepresentedbyintegers1..8and9representsemptysquare.Astateofthepuzzleisapermutationof1..9where1stthreerepresenttoprow,2ndthreerepresentmiddlerow,and3rdthreerepresentbottomrow.EightpuzzletransitionsAneightpuzzletransitionconsistsofmovingasquarenumbered1..8intotheadjacentvacantsquarewhichcanonlybedoneifitisadjacenttothenumberedsquare.Representationofaboardconfigurationisapermutationof1..9where9representsvacantsquare.Example–132496758represents1strow132,2ndrow4blnk6,3rdrow748.Sincetheblankisinthemiddleposition,3canbemoveddown,or4totheright,or6totheleft,or5movedup.Thesetransitionsmake132496758haveneighbors192436758,132946758,132469758,and132456798.KnowledgeRepresentationEssentialtoartificialintelligencearemethodsofrepresentingknowledge.Besidespropositionalandpredicatelogic,anumberofothermethodshavebeendeveloped,including:SemanticNetworksConceptualDependenciesScriptsFramesSemanticNetworksModelsmeaningoflanguage:NodescorrespondtowordconceptsArcsarelabeledwithapropertyname
orrelationshipandlinkanode(wordconcept)withanother(valueofproperty).Quillian(1967)introducedsemanticnetworkswhileothers(Simmons-1973,Brachman-1979,Schank-1979)haveextendedthemodel.SemanticNetworks
StandardizationofRelationshipsStandardizationofrelationshipsforrepresentingknowledgeexpressedinlanguagefocusesoncaserelationsbetweenverbsandnounsinsentence(Fillmore’68,Simmons’73)Prepositionsorarticlesindicaterelationshipbetweenverbandnoun:Agent:entityperformingtheactionObject:entityacteduponInstrument:entityusedinperformingtheactionEtc.ConceptualDependencies
SetofPrimitiveActionsStandardizationofrelationsledtoaxiomaticapproachtobuildsemanticmodelforrepresentingmeaningoflanguageFourPrimitiveConceptClassesACTS-ActionsPPs–Objects(Pictureproducers)AAs–Modifiersofactions(ActionAiders)PAs–Modifiersofobjects(pictureaiders)EachActionisassumedtoreducetooneormoreoftheprimitiveACTsATRANS–transferrelationship(give)PTRANS–transferphysicallocation(go)PROPELMOVEGRASPINGESTEXPELMTRANSMBUILDCONCSPEAKATTENDBuildingComplexConceptualDependencies
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業案場精細化管理
- 2025年飛機維修船塢項目規劃申請報告
- 手動訓練師面試題及答案
- 武漢理化試題及答案
- gmp考試題及答案
- 動物免疫考試題及答案
- 社會職工面試題及答案
- 中軟國際外包java面試題及答案
- redisjava高頻面試題及答案
- 員工培訓需求調查分析
- 幼兒園小班交通安全主題PPT
- 醫用耗材一次性使用申請表
- 山東大學計算思維2022期末考試真題(每年80%都是原題)
- GB/T 42068-2022農村產權流轉交易市場建設和管理規范
- GB/T 10095.1-2022圓柱齒輪ISO齒面公差分級制第1部分:齒面偏差的定義和允許值
- GB/T 2833-1996陶管彎曲強度試驗方法
- DB12T 1179-2023 泥態固化土道路填筑技術規程
- 西安市綠化養護管理標準
- 學校機房網絡規劃與設計
- 開標一覽表(模板)
- 2009-2022歷年河北省公安廳高速交警總隊招聘考試真題含答案帶詳解2022-2023上岸資料匯編3
評論
0/150
提交評論