河北省衡水市故城縣2022-2023學年數學九年級第一學期期末學業質量監測試題含解析_第1頁
河北省衡水市故城縣2022-2023學年數學九年級第一學期期末學業質量監測試題含解析_第2頁
河北省衡水市故城縣2022-2023學年數學九年級第一學期期末學業質量監測試題含解析_第3頁
河北省衡水市故城縣2022-2023學年數學九年級第一學期期末學業質量監測試題含解析_第4頁
河北省衡水市故城縣2022-2023學年數學九年級第一學期期末學業質量監測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.在一個晴朗的上午,小麗拿著一塊矩形木板在陽光下做投影實驗,矩形木板在地面上形成的投影不可能是()A. B.C. D.2.若是方程的解,則下列各式一定成立的是()A. B. C. D.3.已知點P(a,b)是平面直角坐標系中第四象限的點,則化簡+|b-a|的結果是()A. B.a C. D.4.下列說法正確的是()A.所有菱形都相似 B.所有矩形都相似C.所有正方形都相似 D.所有平行四邊形都相似5.若,則代數式的值()A.-1 B.3 C.-1或3 D.1或-36.矩形、菱形、正方形都一定具有的性質是()A.鄰邊相等 B.四個角都是直角C.對角線相等 D.對角線互相平分7.關于拋物線,下列結論中正確的是()A.對稱軸為直線B.當時,隨的增大而減小C.與軸沒有交點D.與軸交于點8.如圖,AB、BC、CD、DA都是⊙O的切線,已知AD=2,BC=5,則AB+CD的值是A.14 B.12 C.9 D.79.如圖,正方形ABCD和正方形DEFG的頂點A在y軸上,頂點D,F在x軸上,點C在DE邊上,反比例函數y=(k≠0)的圖象經過點B、C和邊EF的中點M.若S正方形ABCD=2,則正方形DEFG的面積為()A. B. C.4 D.10.以原點為中心,把點逆時針旋轉,得點,則點坐標是()A. B. C. D.11.如圖,在矩形ABCD中,點E是邊BC的中點,AE⊥BD,垂足為F,則sin∠BDE的值是()A. B. C. D.12.下列兩個圖形:①兩個等腰三角形;②兩個直角三角形;③兩個正方形;④兩個矩形;⑤兩個菱形;⑥兩個正五邊形.其中一定相似的有()A.2組B.3組C.4組D.5組二、填空題(每題4分,共24分)13.設a,b是方程x2+x﹣2018=0的兩個實數根,則(a﹣1)(b﹣1)的值為_____.14.方程的解為________.15.如圖,,請補充—個條件:___________,使(只寫一個答案即可).16.某班從三名男生(含小強)和五名女生中,選四名學生參加學校舉行的“中華古詩文朗誦大賽”,規定女生選n名,若男生小強參加是必然事件,則n=__________.17.已知某轎車油箱注滿油后,以平均耗油量為每千米耗油0.1升的速度行駛,可行駛700千米,該轎車可行駛的總路程S與平均耗油量a之間的函數解析式(關系式)為________.18.如圖,拋物線y=﹣x2﹣2x+3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1關于點B的中心對稱得C2,C2與x軸交于另一點C,將C2關于點C的中心對稱得C3,連接C1與C3的頂點,則圖中陰影部分的面積為.三、解答題(共78分)19.(8分)如圖,在10×10的網格中,有一格點△ABC(說明:頂點都在網格線交點處的三角形叫做格點三角形).(1)將△ABC先向右平移5個單位,再向上平移2個單位,得到△A'B'C',請直接畫出平移后的△A'B'C';(2)將△A'B'C'繞點C'順時針旋轉90°,得到△A''B''C',請直接畫出旋轉后的△A''B''C';(3)在(2)的旋轉過程中,求點A'所經過的路線長(結果保留π).20.(8分)如圖,四邊形、、都是正方形.求證:;求的度數.21.(8分)在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數,a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.(1)填空:該拋物線的“衍生直線”的解析式為,點A的坐標為,點B的坐標為;(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標;(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.22.(10分)解方程(2x+1)2=3(2x+1)23.(10分)一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.(1)從袋中隨機摸出一個球,記錄其顏色,然后放回,攪勻,大量重復該實驗,發現摸到綠球的頻率穩定于0.2,求n的值;(2)若,小明兩次摸球(摸出一球后,不放回,再摸出一球),請用樹狀圖畫出小明摸球的所有結果,并求出兩次摸出不同顏色球的概率.24.(10分)如圖,在△ABC中,AD是BC邊上的中線,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.(1)求證:△ABC∽△FCD;(2)過點A作AM⊥BC于點M,求DE:AM的值;(3)若S△FCD=5,BC=10,求DE的長.25.(12分)如圖,AB為⊙O的直徑,CD是⊙O的弦,AB、CD的延長線交于點E,已知AB=2DE,∠E=18°,求∠AOC的度數.26.某商店經營兒童益智玩具,已知成批購進時的單價是20元.調查發現:銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件玩具售價不能高于40元.設每件玩具的銷售單價上漲了x元時(x為正整數),月銷售利潤為y元.(1)求y與x的函數關系式并直接寫出自變量x的取值范圍.(2)每件玩具的售價定為多少元時,月銷售利潤恰為2520元?(3)每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?

參考答案一、選擇題(每題4分,共48分)1、A【解析】解:將矩形木框立起與地面垂直放置時,形成B選項的影子;將矩形木框與地面平行放置時,形成C選項影子;將木框傾斜放置形成D選項影子;根據同一時刻物高與影長成比例,又因矩形對邊相等,因此投影不可能是A選項中的梯形,因為梯形兩底不相等.故選A.2、A【分析】本題根據一元二次方程的根的定義求解,把x=1代入方程ax2+bx+c=1得,a+b+c=1.【詳解】∵x=1是方程ax2+bx+c=1的解,∴將x=1代入方程得a+b+c=1,故選:B.【點睛】本題考查的是一元二次方程的根即方程的解的定義.解該題的關鍵是要掌握一元二次方程ax2+bx+c=1中幾個特殊值的特殊形式:x=1時,a+b+c=1;x=?1時,a?b+c=1.3、A【解析】根據第四象限的點的橫坐標是正數,縱坐標是負數,求解即可.【詳解】∵點P(a,b)是平面直角坐標系中第四象限的點,∴a>0,b<0,∴b?a<0,∴+|b-a|=?b?(b?a)=?b?b+a=?2b+a=a?2b,故選A.【點睛】本題考查點的坐標,二次根式的性質與化簡,解題的關鍵是根據象限特征判斷正負.4、C【分析】根據相似多邊形的定義一一判斷即可.【詳解】A.菱形的對應邊成比例,對應角不一定相等,故選項A錯誤;B.矩形的對應邊不一定成比例,對應角一定相等,故選項B錯誤;C.正方形對應邊一定成比例,對應角一定相等,故選項C正確;D.平行四邊形對應邊不一定成比例,對應角不一定相等,故選項D錯誤.故選:C.【點睛】本題考查了相似多邊形的判定,解答本題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.5、B【分析】利用換元法解方程即可.【詳解】設=x,原方程變為:,解得x=3或-1,∵≥0,∴故選B.【點睛】本題考查了用換元法解一元二次方程,設=x,把原方程轉化為是解題的關鍵.6、D【解析】矩形、菱形、正方形都是平行四邊形,所以一定都具有的性質是平行四邊形的性質,即對角線互相平分.故選D.7、B【分析】根據二次函數的圖像與性質即可得出答案.【詳解】A:對稱軸為直線x=-1,故A錯誤;B:當時,隨的增大而減小,故B正確;C:頂點坐標為(-1,-2),開口向上,所以與x軸有交點,故C錯誤;D:當x=0時,y=-1,故D錯誤;故答案選擇B.【點睛】本題考查的是二次函數,比較簡單,需要熟練掌握二次函數的圖像與性質.8、D【分析】根據切線長定理,可以證明圓的外切四邊形的對邊和相等,由此即可解決問題.【詳解】∵AB、BC、CD、DA都是⊙O的切線,∴可以假設切點分別為E、H、G、F,∴AF=AE,BE=BH,CH=CG,DG=DF,∴AD+BC=AF+DF+BH+CH=AE+BE+DG+CG=AB+CD,∵AD=2,BC=5,∴AB+CD=AD+BC=7,故選D.【點睛】本題考查切線的性質、切線長定理等知識,解題的關鍵是證明圓的外切四邊形的對邊和相等,屬于中考常考題型.9、B【分析】作BH⊥y軸于H,連接EG交x軸于N,進一步證明△AOD和△ABH都是等腰直角三角形,然后再求出反比例函數解析式為y=,從而進一步求解即可.【詳解】作BH⊥y軸于H,連接EG交x軸于N,如圖,∵正方形ABCD和正方形DEFG的頂點A在y軸上,頂點D、F在x軸上,點C在DE邊上,∴∠EDF=45°,∴∠ADO=45°,∴∠DAO=∠BAH=45°,∴△AOD和△ABH都是等腰直角三角形,∵S正方形ABCD=2,∴AB=AD=,∴OD=OA=AH=BH=×=1,∴B點坐標為(1,2),把B(1,2)代入y=得k=1×2=2,∴反比例函數解析式為y=,設DN=a,則EN=NF=a,∴E(a+1,a),F(2a+1,0),∵M點為EF的中點,∴M點的坐標為(,),∵點M在反比例函數y=的圖象上,∴×=2,整理得3a2+2a﹣8=0,解得a1=,a2=﹣2(舍去),∴正方形DEFG的面積=2?EN?DF=2?=.故選:B.【點睛】本題主要考查了正方形的性質與反比例函數的綜合運用,熟練掌握相關概念是解題關鍵.10、B【分析】畫出圖形,利用圖象法即可解決問題.【詳解】觀察圖象可知B(-5,4),故選B.【點睛】本題考查坐標與圖形變化-旋轉,解題的關鍵是理解題意,靈活運用所學知識解決問題11、C【分析】由矩形的性質可得AB=CD,AD=BC,AD∥BC,可得BE=CE=BC=AD,由全等三角形的性質可得AE=DE,由相似三角形的性質可得AF=2EF,由勾股定理可求DF的長,即可求sin∠BDE的值.【詳解】∵四邊形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵點E是邊BC的中點,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴=2∴AF=2EF,∴AE=3EF=DE,∴sin∠BDE=,故選C.【點睛】本題考查了矩形的性質,全等三角形的判定和性質,相似三角形的判定和性質,勾股定理,解直角三角形的運用,熟練運用相似三角形的判定和性質是本題的關鍵.12、A【解析】試題解析:①不相似,因為沒有指明相等的角或成比例的邊;②不相似,因為只有一對角相等,不符合相似三角形的判定;③相似,因為其四個角均相等,四條邊都相等,符合相似的條件;④不相似,雖然其四個角均相等,因為沒有指明邊的情況,不符合相似的條件;⑤不相似,因為菱形的角不一定對應相等,不符合相似的條件;⑥相似,因為兩正五邊形的角相等,對應邊成比例,符合相似的條件;所以正確的有③⑥.故選A.二、填空題(每題4分,共24分)13、﹣1【分析】由根與系數的關系可求得a+b與ab的值,代入求值即可.【詳解】∵a,b是方程x2+x﹣2018=0的兩個實數根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案為﹣1.【點睛】本題主要考查根與系數的關系,掌握一元二次方程的兩根之和等于﹣、兩根之積等于是解題的關鍵.14、【解析】這個式子先移項,變成x2=9,從而把問題轉化為求9的平方根.【詳解】解:移項得x2=9,

解得x=±1.

故答案為.【點睛】本題考查了解一元二次方程-直接開平方法,解這類問題要移項,把所含未知數的項移到等號的左邊,把常數項移項等號的右邊,化成x2=a(a≥0)的形式,利用數的開方直接求解.注意:

(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數,先把系數化為1,再開平方取正負,分開求得方程解”.

(2)用直接開方法求一元二次方程的解,要仔細觀察方程的特點.15、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【分析】根據相似三角形的判定方法,已知一組角相等則再添加一組相等的角或夾該角的兩個邊對應成比例即可推出兩三角形相似.【詳解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴當∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE時兩三角形相似.故答案為:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【點睛】本題考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.16、1;【解析】根據必然事件的定義可知三名男生都必須被選中,可得答案.【詳解】解:∵男生小強參加是必然事件,∴三名男生都必須被選中,∴只選1名女生,故答案為1.【點睛】本題考查的是事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.17、【分析】根據油箱的總量固定不變,利用每千米耗油0.1升乘以700千米即可得到油箱的總量,故可求解.【詳解】依題意得油箱的總量為:每千米耗油0.1升乘以700千米=70升∴轎車可行駛的總路程S與平均耗油量a之間的函數解析式(關系式)為故答案為:.【點睛】此題主要考查列函數關系式,解題的關鍵是根據題意找到等量關系列出關系式.18、1【分析】將x軸下方的陰影部分沿對稱軸分成兩部分補到x軸上方,即可將不規則圖形轉換為規則的長方形,則可求出.【詳解】∵拋物線與軸交于點、,∴當時,則,解得或,則,的坐標分別為(-3,0),(1,0),∴的長度為4,從,兩個部分頂點分別向下作垂線交軸于、兩點.根據中心對稱的性質,軸下方部分可以沿對稱軸平均分成兩部分補到與,如圖所示,陰影部分轉化為矩形,根據對稱性,可得,則,利用配方法可得,則頂點坐標為(-1,4),即陰影部分的高為4,.故答案為:1.【點睛】本題考查了中心對稱的性質、配方法求拋物線的頂點坐標及求拋物線與x軸交點坐標,解題關鍵是將不規則圖形通過對稱轉換為規則圖形,求陰影面積經常要使用轉化的數學思想.三、解答題(共78分)19、(1)見解析,(2)見解析,(3)π【解析】(1)將三個頂點分別向右平移5個單位,再向上平移2個單位得到對應點,再首尾順次連接即可得;(2)作出點A′,B′繞點C順時針旋轉90°得到的對應點,再首尾順次連接可得;(3)根據弧長公式計算可得.【詳解】解:(1)如圖所示,△A′B′C′即為所求.(2)如圖所示,△A″B″C′即為所求.(3)∵A′C′==,∠A′C′A″=90°,∴點A′所經過的路線長為=π,故答案為π.【點睛】本題主要考查作圖﹣旋轉變換和平移變換,解題的關鍵是熟練掌握旋轉和平移變換的定義和性質,并據此得出變換后的對應點,也考查了弧長公式.20、(1)見解析;(2)45°.【分析】(1)設正方形的邊長為a,求出AC的長為a,再求出△ACF與△GCA中∠ACF的兩邊的比值相等,根據兩邊對應成比例、夾角相等,兩三角形相似,即可判定△ACF與△GCA相似;(2)根據相似三角形的對應角相等可得∠1=∠CAF,再根據三角形的一個外角等于和它不相鄰的兩個內角的和,∠2+∠CAF=∠ACB=45°,所以∠1+∠2=45°.【詳解】設正方形的邊長為,則,∴,又∵,∴;解:由得:,∴,∴.【點睛】本題主要考查相似三角形的判定,利用兩邊對應成比例,夾角相等兩三角形相似的判定和相似三角形對應角相等的性質以及三角形的外角性質,求出兩三角形的對應邊的比值相等是解題關鍵.21、(1);(-2,);(1,0);(2)N點的坐標為(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由拋物線的“衍生直線”知道二次函數解析式的a即可;(2)過A作AD⊥y軸于點D,則可知AN=AC,結合A點坐標,則可求出ON的長,可求出N點的坐標;(3)分別討論當AC為平行四邊形的邊時,當AC為平行四邊形的對角線時,求出滿足條件的E、F坐標即可【詳解】(1)∵,a=,則拋物線的“衍生直線”的解析式為;聯立兩解析式求交點,解得或,∴A(-2,),B(1,0);(2)如圖1,過A作AD⊥y軸于點D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性質可知AN=AC=,∵△AMN為該拋物線的“衍生三角形”,∴N在y軸上,且AD=2,在Rt△AND中,由勾股定理可得DN=,∵OD=,∴ON=或ON=,∴N點的坐標為(0,),(0,);(3)①當AC為平行四邊形的邊時,如圖2,過F作對稱軸的垂線FH,過A作AK⊥x軸于點K,則有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH,∴FH=CK=1,HE=AK=,∵拋物線的對稱軸為x=-1,∴F點的橫坐標為0或-2,∵點F在直線AB上,∴當F點的橫坐標為0時,則F(0,),此時點E在直線AB下方,∴E到y軸的距離為EH-OF=-=,即E的縱坐標為-,∴E(-1,-);當F點的橫坐標為-2時,則F與A重合,不合題意,舍去;②當AC為平行四邊形的對角線時,∵C(-3,0),且A(-2,),∴線段AC的中點坐標為(-2.5,),設E(-1,t),F(x,y),則x-1=2×(-2.5),y+t=,∴x=-4,y=-t,-t=-×(-4)+,解得t=,∴E(-1,),F(-4,);綜上可知存在滿足條件的點F,此時E(-1,-)、(0,)或E(-1,),F(-4,)【點睛】本題是對二次函數的綜合知識考查,熟練掌握二次函數,幾何圖形及輔助線方法是解決本題的關鍵,屬于壓軸題22、x1=-,x2=1【解析】試題分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.試題解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1﹣3=0,解得:x1=﹣,x2=1.點睛:本題考查了解一元一次方程和解一元二次方程的應用,解答此題的關鍵是把一元二次方程轉化成解一元一次方程,題目比較典型,難度不大.23、(1);(2)【分析】(1)利用頻率估計概率,則摸到綠球的概率為0.2,然后利用概率公式列方程即可;(2)畫出樹狀圖,然后根據概率公式求概率即可.【詳解】解:(1)∵經過大量實驗,摸到綠球的頻率穩定于0.2,∴摸到綠球的概率為0.2∴解得:,經檢驗是原方程的解.(2)樹狀圖如下圖所示:由樹狀圖可知:共有12種等可能的結果,其中兩次摸出不同顏色球的結果共有10種,故兩次摸出不同顏色球的概率為:【點睛】此題考查的是利用頻率估計概率、畫樹狀圖及概率公式,掌握畫樹狀圖分析結果和利用概率公式求概率是解決此題的關鍵.24、(1)證明見解析;(2);(3).【分析】(1)利用D是BC邊上的中點,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定定理,就可以證明題目結論;(2)根據相似三角形的性質和等腰三角形的性質定理,解答即可;(3)利用相似三角形的性質就可以求出三角形ABC的面積,然后利用面積公式求出AM的值,結合,即可求解.【詳解】(1)∵D是BC邊上的中點,DE⊥BC,∴BD=DC,∠EDB=∠EDC=90°,∵DE=DE,∴△BDE≌△EDC(SAS),∴∠B=∠DCE,∵AD=AC,∴∠ADC=∠ACB,∴△ABC∽△FCD;(2)∵AD=AC,AM⊥DC,∴DM=DC,∵BD=DC,∴,∵DE⊥BC,AM⊥BC,∴DE∥AM,∴.(3)過點A作AM⊥BC,垂足是M,∵△ABC∽△FCD,BC=2CD,∴,∵S△FCD=5,∴S△ABC=20,又∵BC=10,∴AM=1.∵DE∥AM,∴∴,∴DE=.【點睛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論