




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,用一個半徑為5cm的定滑輪帶動重物上升,滑輪上一點P旋轉了108°,假設繩索(粗細不計)與滑輪之間沒有滑動,則重物上升了()A.πcm B.2πcm C.3πcm D.5πcm2.如圖,某幢建筑物從2.25米高的窗口用水管向外噴水,噴的水流呈拋物線型(拋物線所在平面與墻面垂直),如果拋物線的最高點離墻1米,離地面3米,則水流下落點離墻的距離是()A.2.5米 B.3米 C.3.5米 D.4米3.如圖,將繞點旋轉得到,設點的坐標為,則點的坐標為()A. B.C. D.4.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可變形為()A. B.C. D.5.二次函數的圖象的頂點在坐標軸上,則m的值()A.0 B.2 C. D.0或6.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P、Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是()A. B. C. D.7.如圖,四邊形ABCD為⊙O的內接四邊形,E是BC延長線上的一點,已知∠BOD=130°,則∠DCE的度數為()A.45° B.50° C.65° D.75°8.如圖,內接于圓,,,若,則弧的長為()A. B. C. D.9.拋擲一枚質地均勻的硬幣,連續擲三次,出現“一次正面,兩次反面”的概率為()A. B. C. D.10.如圖,以為頂點的三角形與以為頂點的三角形相似,則這兩個三角形的相似比為()A.2:1 B.3:1 C.4:3 D.3:2二、填空題(每小題3分,共24分)11.已知a=3+2,b=3-2,則a2b+ab2=_________.12.如圖,的中線、交于點,點在邊上,,那么的值是__________.13.如圖:在△ABC中,AB=13,BC=12,點D,E分別是AB,BC的中點,連接DE,CD,如果DE=2.5,那么△ACD的周長是_____.14.如果兩個相似三角形的對應角平分線之比為2:5,較小三角形面積為8平方米,那么較大三角形的面積為_____________平方米.15.已知,則__________.16.如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,將△ABC繞點C順時針旋轉至△A′B′C,使得點A′恰好落在AB上,則旋轉角度為_____.17.已知方程的兩實數根的平方和為,則k的值為____.18.如圖,在△ABC中,AC=6,BC=10,,點D是AC邊上的動點(不與點C重合),過點D作DE⊥BC,垂足為E,點F是BD的中點,連接EF,設CD=x,△DEF的面積為S,則S與x之間的函數關系式為_______________________.三、解答題(共66分)19.(10分)某班數學興趣小組在學習二次根式時進行了如下題目的探索研究:(1)填空:;;(2)觀察第(1)題的計算結果回答:一定等于;(3)根據(1)、(2)的計算結果進行分析總結的規律,計算:20.(6分)在Rt△ABC中,∠ACB=90°,AC=1,記∠ABC=α,點D為射線BC上的動點,連接AD,將射線DA繞點D順時針旋轉α角后得到射線DE,過點A作AD的垂線,與射線DE交于點P,點B關于點D的對稱點為Q,連接PQ.(1)當△ABD為等邊三角形時,①依題意補全圖1;②PQ的長為;(2)如圖2,當α=45°,且BD=時,求證:PD=PQ;(3)設BC=t,當PD=PQ時,直接寫出BD的長.(用含t的代數式表示)21.(6分)如圖,在?ABCD中,點E是邊AD上一點,延長CE到點F,使∠FBC=∠DCE,且FB與AD相交于點G.(1)求證:∠D=∠F;(2)用直尺和圓規在邊AD上作出一點P,使△BPC∽△CDP,并加以證明.(作圖要求:保留痕跡,不寫作法.)22.(8分)問題背景如圖1,在正方形ABCD的內部,作∠DAE=∠ABF=∠BCG=∠CDH,根據三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形.類比探究如圖2,在正△ABC的內部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F三點(D,E,F三點不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明.(2)△DEF是否為正三角形?請說明理由.(3)進一步探究發現,△ABD的三邊存在一定的等量關系,設BD=a,AD=b,AB=c,請探索a,b,c滿足的等量關系.23.(8分)如圖,AB是⊙O的直徑,,E是OB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.(1)求證:直線BF是⊙O的切線;(2)若OB=2,求BD的長.24.(8分)用適當的方法解下列方程:(1)(x﹣2)2﹣16=1(2)5x2+2x﹣1=1.25.(10分)如圖,已知一次函數y=kx+b的圖象與x軸,y軸分別相交于A,B兩點,且與反比例函數y=交于點C,D.作CE⊥x軸,垂足為E,CF⊥y軸,垂足為F.點B為OF的中點,四邊形OECF的面積為16,點D的坐標為(4,﹣b).(1)求一次函數表達式和反比例函數表達式;(2)求出點C坐標,并根據圖象直接寫出不等式kx+b≤的解集.26.(10分)為增強中學生體質,籃球運球已列為銅陵市體育中考選考項目,某校學生不僅練習運球,還練習了投籃,下表是一名同學在罰球線上投籃的試驗結果,根據表中數據,回答問題.投籃次數(n)50100150200250300500投中次數(m)286078104124153252(1)估計這名同學投籃一次,投中的概率約是多少?(精確到0.1)(2)根據此概率,估計這名同學投籃622次,投中的次數約是多少?
參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題分析:根據定滑輪的性質得到重物上升的即為轉過的弧長,利用弧長公式得:l==3πcm,則重物上升了3πcm,故選C.考點:旋轉的性質.2、B【分析】由題意可以知道M(1,2),A(0,2.25),用待定系數法就可以求出拋物線的解析式,當y=0時就可以求出x的值,這樣就可以求出OB的值.【詳解】解:設拋物線的解析式為y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴拋物線的解析式為:y=-0.1(x-1)2+2.當y=0時,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故選:B.【點睛】本題是一道二次函數的綜合試題,考查了利用待定系數法求函數的解析式的運用,運用拋物線的解析式解決實際問題,解答本題是求出拋物線的解析式.3、B【分析】由題意可知,點C為線段A的中點,故可根據中點坐標公式求解.對本題而言,旋轉后的縱坐標與旋轉前的縱坐標互為相反數,(旋轉后的橫坐標+旋轉前的橫坐標)÷2=-1,據此求解即可.【詳解】解:∵繞點旋轉得到,點的坐標為,∴旋轉后點A的對應點的橫坐標為:,縱坐標為-b,所以旋轉后點的坐標為:.故選:B.【點睛】本題考查了旋轉變換后點的坐標規律探求,屬于常見題型,掌握求解的方法是解題的關鍵.4、A【解析】首先進行移項,然后把二次項系數化為1,再進行配方,方程左右兩邊同時加上一次項系數一半的平方,即可變形成左邊是完全平方,右邊是常數的形式.【詳解】∵ax2+bx+c=0,∴ax2+bx=?c,∴x2+x=?,∴x2+x+=?+,∴(x+)2=.故選A.5、D【解析】試題解析:當圖象的頂點在x軸上時,∵二次函數的圖象的頂點在x軸上,∴二次函數的解析式為:∴m=±2.當圖象的頂點在y軸上時,m=0,故選D.6、C【解析】如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1,交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1.∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=20°.∵∠OP1B=20°,∴OP1∥AC.∵AO=OB,∴P1C=P1B,∴OP1AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經過圓心,經過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是2.故選C.【點睛】本題考查了切線的性質、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考常考題型.7、C【分析】根據圓周角定理求出∠A,根據圓內接四邊形的性質得出∠DCE=∠A,代入求出即可.【詳解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四邊形ABCD為⊙O的內接四邊形,∴∠DCE=∠A=65°,故選:C.【點睛】本題考查了圓周角定理,圓內接四邊形的性質的應用,注意:圓內接四邊形的對角互補,并且一個外角等于它的內對角.8、A【分析】連接OB,OC.首先證明△OBC是等腰直角三角形,求出OB即可解決問題.【詳解】連接OB,OC.∵∠A=180°-∠ABC-∠ACB=180°-65°-70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的長為=π,故選A.【點睛】本題考查圓周角定理,弧長公式,等腰直角三角形的性質的等知識,解題的關鍵是熟練掌握基本知識9、B【分析】利用樹狀圖分析,即可得出答案.【詳解】共8種情況,出現“一次正面,兩次反面”的情況有3種,所以概率=,故答案選擇B.【點睛】本題考查的是求概率:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.10、A【分析】通過觀察圖形可知∠C和∠F是對應角,所以AB和DE是對應邊;BC和EF是對應邊,即可得出結論.【詳解】解:觀察圖形可知∠C和∠F是對應角,所以AB和DE是對應邊;BC和EF是對應邊,∵BC=12,EF=6,∴.故選A.【點睛】此題重點考察學生對相似三角形性質的理解,掌握相似三角形性質是解題的關鍵.二、填空題(每小題3分,共24分)11、6【解析】仔細觀察題目,先對待求式提取公因式化簡得ab(a+b),將a=3+2,b=3-2,代入運算即可.【詳解】解:待求式提取公因式,得將已知代入,得故答案為6.【點睛】考查代數式求值,熟練掌握提取公因式法是解題的關鍵.12、【分析】根據三角形的重心和平行線分線段成比例解答即可.【詳解】∵△ABC的中線AD、CE交于點G,
∴G是△ABC的重心,
∴,
∵GF∥BC,
∴,
∵DC=BC,
∴,
故答案為:.【點睛】此題考查三角形重心問題以及平行線分線段成比例,解題關鍵是根據三角形的重心得出比例關系.13、1【分析】根據三角形中位線定理得到AC=2DE=5,AC∥DE,根據勾股定理的逆定理得到∠ACB=90°,根據線段垂直平分線的性質得到DC=BD,根據三角形的周長公式計算即可.【詳解】∵D,E分別是AB,BC的中點,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中點,∴直線DE是線段BC的垂直平分線,∴DC=BD,∴△ACD的周長=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案為1.【點睛】本題考查的是三角形中位線定理、線段垂直平分線的判定和性質,掌握三角形的中位線平行于第三邊,并且等于第三邊的一半是解題的關鍵.14、1【分析】設較大三角形的面積為x平方米.根據相似三角形面積的比等于相似比的平方列出方程,然后求解即可.【詳解】設較大三角形的面積為x平方米.∵兩個相似三角形的對應角平分線之比為2:5,∴兩個相似三角形的相似比是2:5,∴兩個相似三角形的面積比是4:25,∴8:x=4:25,解得:x=1.故答案為:1.【點睛】本題考查了相似三角形的性質,相似三角形周長的比等于相似比、相似三角形面積的比等于相似比的平方、相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.15、【分析】根據比例的性質,由得,x=,再將其代入所求式子可得出結果.【詳解】解:由得,x=,所以.故答案為:.【點睛】此題考查了比例的性質,熟練掌握比例的性質是解題的關鍵,較簡單.16、60°【解析】試題解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC繞點C順時針旋轉至△A′B′C時點A′恰好落在AB上,∴AC=A′C,∴△A′AC是等邊三角形,∴∠ACA′=60°,∴旋轉角為60°.故答案為60°.17、3【分析】根據一元二次方程根與系數的關系,得出和的值,然后將平方和變形為和的形式,代入便可求得k的值.【詳解】∵,設方程的兩個解為則,∵兩實根的平方和為,即=∴解得:k=3或k=-11∵當k=-11時,一元二次方程的△<0,不符,需要舍去故答案為:3【點睛】本題考查根與系數的關系,注意在最后求解出2個值后,有一個值不符需要舍去.18、【分析】可在直角三角形CED中,根據DE、CE的長,求出△BED的面積即可解決問題.【詳解】在Rt△CDE中,,CD=x
∴∴,
∴.
∵點F是BD的中點,
∴,
故答案為.【點睛】本題考查解直角三角形,三角形的面積等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.三、解答題(共66分)19、(1)3,1;(2);(3).【分析】(1)依據被開方數即可計算得到結果;(2)觀察計算結果不一定等于a,應根據a的值來確定答案;(3)原式利用得出規律計算即可得到結果.【詳解】(1),;故答案為:3,1.(2)=|a|,故答案為:|a|;(3)∵a<b,∴a?b<0,∴=|a-b|=b?a.【點睛】此題考查了二次根式的性質與化簡,熟練掌握二次根式的性質是解本題的關鍵.20、(1)①詳見解析;②1;(1)詳見解析;(3)BD=.【分析】(1)①根據題意畫出圖形即可.②解直角三角形求出PA,再利用全等三角形的性質證明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通過計算證明DF=FQ即可解決問題.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設BD=x,則CD=x﹣t,,利用相似三角形的性質構建方程求解即可解決問題.【詳解】(1)解:①補全圖形如圖所示:②∵△ABD是等邊三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD?tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如圖:∵PA⊥AD,∴∠PAD=90°由題意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF⊥BQ∴∠AHF=∠HFC=∠ACF=90°∴四邊形ACFH是矩形∴∠CAH=90°,AH=CF∵∠ACH=∠DAP=90°∴∠CAD=∠PAH又∵∠ACD=∠AHP=90°∴△ACD≌△AHP(AAS)∴AH=AC=1∴CF=AH=1∵,BC=1,B,Q關于點D對稱∴,∴∴F為DQ中點∴PF垂直平分DQ∴PQ=PD.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設BD=x,則CD=x﹣t,∵PD=PQ,PF⊥DQ∴∵四邊形AHFC是矩形∴∵△ACB∽△PAD∴∴∴∵△PAH∽△DAC∴∴解得∴.故答案是:(1)①詳見解析;②1;(1)詳見解析;(3).【點睛】本題是三角形綜合題目,主要考查了三角形的旋轉、等邊三角形的性質、銳角三角函數、勾股定理、全等三角形的判定和性質、矩形的判定和性質,構造全等三角形、相似三角形、直角三角形是解題的關鍵.21、(1)詳見解析;(2)詳見解析.【分析】(1)根據四邊形ABCD是平行四邊形可得AD∥BC,∠FGE=FBC,再根據已知∠FBC=∠DCE,進而可得結論;(2)作三角形FBC的外接圓交AD于點P即可證明.【詳解】解:(1)∵四邊形ABCD是平行四邊形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如圖所示:點P即為所求作的點.證明:作BC和BF的垂直平分線,交于點O,作△FBC的外接圓,連接BO并延長交AD于點P,∴∠PCB=90°∵AD∥BC∴∠CPD=∠PCB=90°由(1)得∠F=∠D∵∠F=∠BPC∴∠D=∠BPC∴△BPC∽△CDP.【點睛】此題主要考查圓的綜合應用,解題的關鍵是熟知平行四邊形的性質、外接圓的性質及相似三角形的判定與性質.22、(1)見解析;(1)△DEF是正三角形;理由見解析;(3)c1=a1+ab+b1【解析】試題分析:(1)由正三角形的性質得∠CAB=∠ABC=∠BCA=60°,AB=BC,證出∠ABD=∠BCE,由ASA證明△ABD≌△BCE即可;、(1)由全等三角形的性質得出∠ADB=∠BEC=∠CFA,證出∠FDE=∠DEF=∠EFD,即可得出結論;(3)作AG⊥BD于G,由正三角形的性質得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出結論.試題解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如圖所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考點:1.全等三角形的判定與性質;1.勾股定理.23、(1)證明見解析;(2)BD=.【分析】(1)連接OC,由已知可得∠BOC=90°,根據SAS證明△OCE≌△BFE,根據全等三角形的對應角相等可得∠OBF=∠COE=90°,繼而可證明直線BF是⊙O的切線;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF的長,然后由S△ABF=,即可求出BD=.【詳解】解:(1)連接OC,∵AB是⊙O的直徑,,∴∠BOC=90°,∵E是OB的中點,∴OE=BE,在△OCE和△BFE中,,∴△OCE≌△BFE(SAS),∴∠OBF=∠COE=90°,∴直線BF是⊙O的切線;(2)∵OB=OC=2,由(1)得:△OCE≌△BFE,∴BF=OC=2,∴AF=,∴S△ABF=,即4×2=2BD,∴BD=.【點睛】本題考查了切線的判定、全等三角形的判定與性質、勾股定理、三角形面積的不同表示方法,熟練掌握相關的性質與定理是解題的關鍵.24、(1)x1=-2,x2=6;(2)x1=,x2=【分析】(1)先移項,兩邊再開方,即可得出兩個一元一次方程,求出方程的解即可;(2)求出b2-4ac的值,代入公式求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年市場調研與分析能力考試試卷及答案
- 農村數字金融生態-洞察及研究
- 2025年美術教育基礎與創新實踐的考試試卷及答案
- 2025年計算機程序設計考試試卷及答案
- 2025年城市環境管理與保護專業能力測評試題及答案
- 2025年電子信息工程師資格考試試卷及答案
- 講故事比賽演講稿
- 2024年度浙江省二級造價工程師之建設工程造價管理基礎知識綜合檢測試卷A卷含答案
- 2024年度浙江省二級造價工程師之建設工程造價管理基礎知識題庫練習試卷B卷附答案
- 早期矯治培訓課件
- 幼兒園小班交通安全主題PPT
- 醫用耗材一次性使用申請表
- 山東大學計算思維2022期末考試真題(每年80%都是原題)
- GB/T 42068-2022農村產權流轉交易市場建設和管理規范
- GB/T 10095.1-2022圓柱齒輪ISO齒面公差分級制第1部分:齒面偏差的定義和允許值
- GB/T 2833-1996陶管彎曲強度試驗方法
- DB12T 1179-2023 泥態固化土道路填筑技術規程
- 西安市綠化養護管理標準
- 學校機房網絡規劃與設計
- 開標一覽表(模板)
- 2009-2022歷年河北省公安廳高速交警總隊招聘考試真題含答案帶詳解2022-2023上岸資料匯編3
評論
0/150
提交評論