




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.將拋物線向左平移2個單位后所得到的拋物線為()A. B.C. D.2.若將拋物線向右平移2個單位后,所得拋物線的表達式為y=2x2,則原來拋物線的表達式為()A.y=2x2+2 B.y=2x2﹣2 C.y=2(x+2)2 D.y=2(x﹣2)23.如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠BOD等于()A.20° B.30° C.40° D.60°4.如圖,小紅同學要用紙板制作一個高4cm,底面周長是6πcm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是()A.12πcm2 B.15πcm2 C.18πcm2 D.24πcm25.半徑為的圓中,的圓心角所對的弧的長度為()A. B. C. D.6.在一個不透明的盒子里,裝有4個黑球和若干個白球,它們除顏色外沒有任何其他區(qū)別,搖勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復,共摸球40次,其中10次摸到黑球,則估計盒子中大約有白球()A.12個 B.16個 C.20個 D.30個7.將拋物線向上平移2個單位長度,再向右平移1個單位長度后,得到的拋物線解析是()A. B. C. D.8.在同一坐標系中,一次函數(shù)y=ax+1與二次函數(shù)y=x2+a的圖像可能是()A. B. C. D.9.如圖,正方形的邊長為,對角線相交于點,將直角三角板的直角頂點放在點處,兩直角邊分別與重疊,當三角板繞點順時針旋轉(zhuǎn)角時,兩直角邊與正方形的邊交于兩點,則四邊形的周長()A.先變小再變大 B.先變大再變小C.始終不變 D.無法確定10.在Rt△ABC中,∠C=90°,若AC=4,AB=5,則cosB的值()A. B. C. D.11.在平面直角坐標系中,以原點O為圓心的⊙O交x軸正半軸為M,P為圓上一點,坐標為(,1),則cos∠POM=()A. B. C. D.12.如圖,正方形中,,為的中點,將沿翻折得到,延長交于,,垂足為,連接、.結(jié)論:①;②≌;③∽;④;⑤.其中的正確的個數(shù)是()A.2 B.3 C.4 D.5二、填空題(每題4分,共24分)13.如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中的長是_____cm(計算結(jié)果保留π).14.如圖,邊長為3的正六邊形內(nèi)接于,則圖中陰影部分的面積和為_________(結(jié)果保留).15.如圖,一款落地燈的燈柱AB垂直于水平地面MN,高度為1.6米,支架部分的形為開口向下的拋物線,其頂點C距燈柱AB的水平距離為0.8米,距地面的高度為2.4米,燈罩頂端D距燈柱AB的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.16.拋物線與x軸只有一個公共點,則m的值為________.17.在平面直角坐標系中,點P(3,﹣5)關于原點對稱的點的坐標是_____.18.反比例函數(shù)y=的圖象在第一、三象限,則m的取值范圍是_______.三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.動點P,Q從點A同時出發(fā),點P沿AB向終點B運動;點Q沿AC→CB向終點B運動,速度都是1cm/s.當一個點到達終點時,另一個點同時停止運動.設點P運動的時間為t(s),在運動過程中,點P,點Q經(jīng)過的路線與線段PQ圍成的圖形面積為S(cm2).(1)AC=_________cm;(2)當點P到達終點時,BQ=_______cm;(3)①當t=5時,s=_________;②當t=9時,s=_________;(4)求S與t之間的函數(shù)解析式.20.(8分)如圖,在等腰中,,,是上一點,若.(1)求的長;(2)求的值.21.(8分)如圖,四邊形是平行四邊形,、是對角線上的兩個點,且.求證:.22.(10分)如圖,△ABC是一塊銳角三角形余料,邊BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QM在BC上,其余兩個項點P,N分別在AB,AC上.(1)當矩形的邊PN=PQ時,求此時矩形零件PQMN的面積;(2)求這個矩形零件PQMN面積S的最大值.23.(10分)“互聯(lián)網(wǎng)+”時代,網(wǎng)上購物備受消費者青睞,某網(wǎng)店專售一款休閑褲,其成本為每條40元,當售價為每條80元時,每月可售價100條.為了吸引更多顧客,該網(wǎng)店采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降元,則每月可多銷售5條.設每條褲子的售價為元(為正整數(shù)),每月的銷售量為條.(1)直接寫出與的函數(shù)關系式;(2)設該網(wǎng)店每月獲得的利潤為元,當銷售單價為多少元時,每月獲得的利潤最大,最大利潤是多少?(3)該網(wǎng)店店主熱心公益事業(yè),決定每月從利潤中捐出200元資助貧困學生,為了保證捐款后每月利潤不低于3800元,且讓消費者得到最大的實惠,該如何確定休閑褲的銷售單價?24.(10分)為了了解全校名同學對學校設置的體操、籃球、足球、跑步、舞蹈等課外活動項目的喜愛情況,在全校范圍內(nèi)隨機抽取了若干名同學,對他們喜愛的項目(每人選一項)進行了問卷調(diào)查,將數(shù)據(jù)進行了統(tǒng)計,并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整),請回答下列問題.(1)在這次問卷調(diào)查中,共抽查了_________名同學;(2)補全條形統(tǒng)計圖;(3)估計該校名同學中喜愛足球活動的人數(shù);(4)在體操社團活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加體操大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.25.(12分)某果園有100棵桃樹,一棵桃樹平均結(jié)1000個桃子,現(xiàn)準備多種一些桃樹以提高產(chǎn)量,試驗發(fā)現(xiàn),每多種一棵桃樹,每棵樹的產(chǎn)量就會減少2個,但多種的桃樹不能超過100棵,如果要使產(chǎn)量增加15.2%,那么應多種多少棵桃樹?26.為了解決農(nóng)民工子女就近入學問題,我市第一小學計劃2012年秋季學期擴大辦學規(guī)模.學校決定開支八萬元全部用于購買課桌凳、辦公桌椅和電腦,要求購買的課桌凳與辦公桌椅的數(shù)量比為20:1,購買電腦的資金不低于16000元,但不超過24000元.已知一套辦公桌椅比一套課桌凳貴80元,用2000元恰好可以買到10套課桌凳和4套辦公桌椅.(課桌凳和辦公桌椅均成套購進)(1)一套課桌凳和一套辦公桌椅的價格分別為多少元?(2)求出課桌凳和辦公桌椅的購買方案.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)拋物線的平移規(guī)律“上加下減,左加右減”求解即可.【詳解】解:將拋物線向左平移2個單位后所得到的拋物線為:.故選D.【點睛】本題考查了拋物線的平移,屬于基礎知識,熟知拋物線的平移規(guī)律是解題的關鍵.2、C【解析】分析:根據(jù)平移的規(guī)律,把已知拋物線的解析式向左平移即可得到原來拋物線的表達式.詳解:∵將拋物線向右平移1個單位后,所得拋物線的表達式為y=1x1,∴原拋物線可看成由拋物線y=1x1向左平移1個單位可得到原拋物線的表達式,∴原拋物線的表達式為y=1(x+1)1.故選C.點睛:本題主要考查了二次函數(shù)的圖象與幾何變換,掌握函數(shù)圖象的平移規(guī)律是解題的關鍵,即“左加右減,上加下減”.3、C【解析】試題分析:由線段AB是⊙O的直徑,弦CD丄AB,根據(jù)垂徑定理的即可求得:,然后由圓周角定理可得∠BOD=2∠CAB=2×20°=40°.故選C.考點:圓周角定理;垂徑定理.4、B【解析】試題分析:∵底面周長是6π,∴底面圓的半徑為3cm,∵高為4cm,∴母線長5cm,∴根據(jù)圓錐側(cè)面積=底面周長×母線長,可得S=×6π×5=15πcm1.故選B.考點:圓錐側(cè)面積.5、D【分析】根據(jù)弧長公式l=,計算即可.【詳解】弧長=,
故選:D.【點睛】本題考查弧長公式,解題的關鍵是記住弧長公式,屬于中考常考題型.6、A【解析】∵共摸了40次,其中10次摸到黑球,∴有10次摸到白球.∴摸到黑球與摸到白球的次數(shù)之比為1:1.∴口袋中黑球和白球個數(shù)之比為1:1.∴4×1=12(個).故選A.考點:用樣本估計總體.7、B【分析】把配成頂點式,根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線向上平移2個單位長度,再向右平移1個單位長度后,得到的拋物線的解析式為:故選:B【點睛】考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.8、A【分析】本題可先由一次函數(shù)y=ax+1圖象得到字母系數(shù)的正負,再與二次函數(shù)y=x2+a的圖象相比較看是否一致.【詳解】解:A、由拋物線y軸的交點在y軸的負半軸上可知,a<0,由直線可知,a<0,正確;B、由拋物線與y軸的交點在y軸的正半軸上可知,a>0,二次項系數(shù)為負數(shù),與二次函數(shù)y=x2+a矛盾,錯誤;C、由拋物線與y軸的交點在y軸的負半軸上可知,a<0,由直線可知,a>0,錯誤;D、由直線可知,直線經(jīng)過(0,1),錯誤,故選A.【點睛】考核知識點:一次函數(shù)和二次函數(shù)性質(zhì).9、A【分析】由四邊形ABCD是正方形,直角∠FOE,證明△DOF≌△COE,則可得四邊形OECF的周長與OE的變化有關.【詳解】解:四邊形是正方形,,,即,又,隨的變化而變化。由旋轉(zhuǎn)可知先變小再變大,故選:.【點睛】本題考查了用正方形的性質(zhì)來證明三角形全等,再利用相等線段進行變形,根據(jù)變化的線段來判定四邊形OECF周長的變化.10、B【分析】根據(jù)勾股定理計算出BC長,再根據(jù)余弦定義可得答案.【詳解】如圖所示:∵AC=4,AB=5,∴BC===3,∴cosB==.故選:B.【點睛】考查了銳角三角函數(shù),解題關鍵是掌握余弦:銳角A的鄰邊b與斜邊c的比叫做∠A的余弦,記作cosA.11、A【解析】試題分析:作PA⊥x軸于A,∵點P的坐標為(,1),∴OA=,PA=1,由勾股定理得,OP=2,cos∠POM==,故選A.考點:銳角三角函數(shù)12、C【分析】根據(jù)正方形的性質(zhì)以及折疊的性質(zhì)依次對各個選項進行判斷即可.【詳解】解:∵正方形ABCD中,AB=6,E為AB的中點
∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°
∵△ADE沿DE翻折得到△FDE
∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°
∴BE=EF=3,∠DFG=∠C=90°
∴∠EBF=∠EFB
∵∠AED+∠FED=∠EBF+∠EFB
∴∠DEF=∠EFB
∴BF∥ED
故結(jié)論①正確;
∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG
∴Rt△DFG≌Rt△DCG
∴結(jié)論②正確;
∵FH⊥BC,∠ABC=90°
∴AB∥FH,∠FHB=∠A=90°
∵∠EBF=∠BFH=∠AED
∴△FHB∽△EAD
∴結(jié)論③正確;
∵Rt△DFG≌Rt△DCG
∴FG=CG
設FG=CG=x,則BG=6-x,EG=3+x
在Rt△BEG中,由勾股定理得:32+(6-x)2=(3+x)2
解得:x=2
∴BG=4
∴tan∠GEB=,故結(jié)論④正確;
∵△FHB∽△EAD,且,∴BH=2FH
設FH=a,則HG=4-2a
在Rt△FHG中,由勾股定理得:a2+(4-2a)2=22
解得:a=2(舍去)或a=,∴S△BFG==2.4
故結(jié)論⑤錯誤;
故選:C.【點睛】本題主要考查了正方形的性質(zhì)、折疊的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、平行線的判定、勾股定理、三角函數(shù),綜合性較強.二、填空題(每題4分,共24分)13、10π【分析】根據(jù)的長就是圓錐的底面周長即可求解.【詳解】解:∵圓錐的高h為12cm,OA=13cm,∴圓錐的底面半徑為=5cm,∴圓錐的底面周長為10πcm,∴扇形AOC中的長是10πcm,故答案為10π.【點睛】本題考查了圓錐的計算,解題的關鍵是了解圓錐的底面周長等于展開扇形的弧長.14、【分析】將陰影部分合并即可得到扇形的面積,利用扇形面積公式計算即可.【詳解】∵ABCDEF是正六邊形,∴∠AOE=120°,陰影部分的面積和=.故答案為:.【點睛】本題考查扇形面積計算,關鍵在于記住扇形的面積公式.15、1.95【分析】以點B為原點建立直角坐標系,則點C為拋物線的頂點,即可設頂點式y(tǒng)=a(x?0.8)2+2.4,點A的坐標為(0,1.6),代入可得a的值,從而求得拋物線的解析式,將點D的橫坐標代入,即可求點D的縱坐標就是點D距地面的高度【詳解】解:如圖,以點B為原點,建立直角坐標系.由題意,點A(0,1.6),點C(0.8,2.4),則設頂點式為y=a(x?0.8)2+2.4將點A代入得,1.6=a(0?0.8)2+2.4,解得a=?1.25∴該拋物線的函數(shù)關系為y=?1.25(x?0.8)2+2.4∵點D的橫坐標為1.4∴代入得,y=?1.25×(1.4?0.8)2+2.4=1.95故燈罩頂端D距地面的高度為1.95米故答案為1.95.【點睛】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應用.為數(shù)學建模題,借助二次函數(shù)解決實際問題.16、8【解析】試題分析:由題意可得,即可得到關于m的方程,解出即可.由題意得,解得考點:本題考查的是二次根式的性質(zhì)點評:解答本題的關鍵是熟練掌握當時,拋物線與x軸有兩個公共點;當時,拋物線與x軸只有一個公共點;時,拋物線與x軸沒有公共點.17、(﹣3,5)【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反,即可得答案.【詳解】點P(3,﹣5)關于原點對稱的點的坐標是(﹣3,5),故答案為:(﹣3,5).【點睛】本題主要考查平面直角坐標系中,關于原點的兩個點的坐標變化規(guī)律,掌握兩個點關于原點對稱時,它們的坐標符號相反,是解題的關鍵.18、m>1【分析】由于反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m的取值范圍即可.【詳解】解:由題意得,反比例函數(shù)y=的圖象在一、三象限內(nèi),則m-1>0,解得m>1.故答案為m>1.【點睛】本題考查了反比例函數(shù)的性質(zhì),解題的關鍵是熟練的掌握反比例函數(shù)的性質(zhì).三、解答題(共78分)19、(1)8;(2)4;(3)①,②22;(4)【分析】(1)根據(jù)勾股定理求解即可;(2)先求出點P到達中點所需時間,則可知點Q運動路程,易得CQ長,;(3)①作PD⊥AC于D,可證△APD∽△ABC,利用相似三角形的性質(zhì)可得PD長,根據(jù)面積公式求解即可;②作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質(zhì)可得PE長,用可得s的值;(4)當0<t≤8時,作PD⊥AC于D,可證△APD∽△ABC,可用含t的式子表示出PD的長,利用三角形面積公式可得s與t之間的函數(shù)解析式;當8<t≤10時,作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質(zhì)可用含t的式子表示出PE長,用可得s與t之間的函數(shù)解析式.【詳解】解:(1)在Rt△ABC中,由勾股定理得(2)設點P運動到終點所需的時間為t,路程為AB=10cm,則點Q運動的路程為10cm,即cm所以當點P到達終點時,BQ=4cm.(3)①作PD⊥AC于D,則∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即∴.∴.②如圖,作PE⊥AC于E,則∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.(4)當0<t≤8時,如圖①.作PD⊥AC于D.∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即.∴.∴.當8<t≤10時,如圖②.作PE⊥AC于E.∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.綜上所述:【點睛】本題考查了二次函數(shù)在三角形動點問題中的應用,涉及的知識點有勾股定理、相似三角形的判定與性質(zhì),靈活的應用相似三角形對應線段成比例的性質(zhì)求線段長是解題的關鍵.20、(1)AD=2;(2)【分析】(1)先作,由等腰三角形,,得到,根據(jù)勾股定理可得;(2)由長度,再根據(jù)銳角三角函數(shù)即可得到答案.【詳解】(1)作等腰三角形,(2)【點睛】本題考查等腰三角形和銳角三角函數(shù),解題的關鍵是掌握等腰三角形和銳角三角函數(shù).21、見解析【分析】先根據(jù)平行四邊形的性質(zhì)得,,則,再證明得到AE=CF.【詳解】證明:∵四邊形為平行四邊形∴,∴∵∴∴【點睛】本題考查了平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等;平行四邊形的對角線互相平分.22、(1)矩形零件PQMN的面積為2304mm2;(2)這個矩形零件PQMN面積S的最大值是2400mm2.【分析】(1)設PQ=xmm,則AE=AD-ED=80-x,再證明△APN∽△ABC,利用相似比可表示出,根據(jù)正方形的性質(zhì)得到(80-x)=x,求出x的值,然后結(jié)合正方形的面積公式進行解答即可.
(2)由(1)可得,求此二次函數(shù)的最大值即可.【詳解】解:(1)設PQ=xmm,
易得四邊形PQDE為矩形,則ED=PQ=x,
∴AE=AD-ED=80-x,
∵PN∥BC,
∴△APN∽△ABC,,即,,∵PN=PQ,,解得x=1.
故正方形零件PQMN面積S=1×1=2304(mm2).(2)當時,S有最大值==2400(mm2).所以這個矩形零件PQMN面積S的最大值是2400mm2.【點睛】本題考查綜合考查相似三角形性質(zhì)的應用以及二次函數(shù)的最大值的求法.23、(1);(2)當銷售單價為70元時,最大利潤4500元;(3)銷售單價定為元.【分析】(1)根據(jù)降價1元,銷量增加5條,則降價元,銷量增加件,即可得出關系式;(2)根據(jù)總利潤=每條利潤×銷量,可建立函數(shù)關系式,再根據(jù)二次函數(shù)最值的求法得到最大利潤;(3)先求出利潤為(3800+200)元時的售價,取符合題意的價格即可.【詳解】解:(1)由題意可得:整理得(2)當時,即當銷售單價為70元時,最大利潤4500元.(3)由題意,得:解得:,拋物線開口向下,對稱軸為直線當時,符合該網(wǎng)店要求而為了讓顧客得到最大實惠,故當銷售單價定為元時,即符合網(wǎng)店要求,又能讓顧客得到最大實惠.【點睛】本題考查了二次函數(shù)的應用,熟練掌握銷售問題的等量關系建立二次函數(shù)模型是解題的關鍵.24、(1)50;(2)見解析;(3)1020名;(4)樹狀圖見解析,【分析】(1)根據(jù)兩種統(tǒng)計圖可知喜歡跑步的有5名同學,占10%,即可求得總?cè)藬?shù);
(2)由(1)
可求得喜歡足球的人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年移動互聯(lián)網(wǎng)應用開發(fā)考試試題及答案
- 2025年數(shù)據(jù)科學與大數(shù)據(jù)技術(shù)課程考試試卷及答案
- 2025年農(nóng)村經(jīng)濟管理師資格考試試卷及答案
- 2025年美術(shù)教師專業(yè)技能考試試題及答案
- 2025年教育科技在課堂應用能力考核試卷及答案
- 2025年教師資格證考試卷及答案
- 2025年非洲文化與貿(mào)易研究生入學考試試卷及答案
- 2025年高層管理人員溝通技巧考核試題及答案
- 正規(guī)煤炭運輸合同
- 2024年度浙江省護師類之主管護師自我檢測試卷B卷附答案
- 2023年大姚縣民政局系統(tǒng)事業(yè)單位招聘筆試題庫及答案
- 心肺運動試驗教學課件
- 債權(quán)登記申報表
- 2022年醫(yī)學專題-肝內(nèi)膽管結(jié)石詳解
- 明陽風機培訓課件
- 委外加工流程
- 住院醫(yī)囑審核登記表-9月上
- Q∕SY 05010-2016 油氣管道安全目視化管理規(guī)范
- 藍海華騰變頻器說明書
- 中國海洋大學論文封面模板
- 遵義會議-(演示)(課堂PPT)
評論
0/150
提交評論