




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.對于反比例函數(shù)y=(k≠0),下列所給的四個結(jié)論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當(dāng)k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱2.如圖,已知直線a∥b∥c,直線m、n與a、b、c分別交于點A、C、E、B、D、F,若AC=8,CE=12,BD=6,則BF的值是()A.14 B.15 C.16 D.173.若2a=3b,則下列比列式正確的是()A. B. C. D.4.下列方程式屬于一元二次方程的是()A. B. C. D.5.如圖,在中,,,,點為上任意一點,連結(jié),以,為鄰邊作平行四邊形,連結(jié),則的最小值為()A. B. C. D.6.如圖,將n個邊長都為2的正方形按如圖所示擺放,點A1、A2、A3,…,An分別是正方形的中心,則這n個正方形重疊的面積之和是()A.n B.n-1C.4n D.4(n-1)7.如圖,AD是的一條角平分線,點E在AD上.若,,則與的面積比為()A.1:5 B.5:1 C.3:20 D.20:38.如圖,⊙C過原點,與x軸、y軸分別交于A、D兩點.已知∠OBA=30°,點D的坐標(biāo)為(0,2),則⊙C半徑是()A. B. C. D.29.如圖,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,則EC的長為()A.1 B.2 C.3 D.410.中,,,,則的值是()A. B. C. D.11.如圖,在直角坐標(biāo)系中,矩形OABC的頂點O在坐標(biāo)原點,邊OA在x軸上,OC在y軸上,且點B的坐標(biāo)為(6,4),如果矩形OA′B′C′與矩形OABC關(guān)于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標(biāo)是()A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)12.在Rt△ABC中,∠C=90°,AB=5,AC=3,則下列等式正確的是()A.sinA= B.cosA= C.tanA= D.cosA=二、填空題(每題4分,共24分)13.我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.14.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,分別以A,B為圓心,以的長為半徑作圓,將Rt△ABC截去兩個扇形,則剩余(陰影)部分的面積為_____.15.如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標(biāo)為_____.16.如圖,某園林公司承擔(dān)了綠化某社區(qū)塊空地的綠化任務(wù),工人工作一段時間后,提高了工作效率.該公司完成的綠化面積(單位:與工作時間(單位:)之間的函數(shù)關(guān)系如圖所示,則該公司提高工作效率前每小時完成的綠化面積是____________.17.在中,,則∠C的度數(shù)為____.18.小明家的客廳有一張直徑為1.1米,高0.75米的圓桌BC,在距地面2米的A處有一盞燈,圓桌的影子為DE,依據(jù)題意建立平面直角坐標(biāo)系,其中點D的坐標(biāo)為(2,0),則點E的坐標(biāo)是_________.三、解答題(共78分)19.(8分)如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C(1)請判斷:FG與CE的數(shù)量關(guān)系是__________,位置關(guān)系是__________;(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷并給予證明.20.(8分)(1)解方程(2)計算:21.(8分)如圖,△ABC的高AD、BE相交于點F.求證:.22.(10分)關(guān)于x的方程有實數(shù)根,且m為正整數(shù),求m的值及此時方程的根.23.(10分)新建馬路需要在道路兩旁安裝路燈、種植樹苗.如圖,某道路一側(cè)路燈AB在兩棵同樣高度的樹苗CE和DF之間,樹苗高2m,兩棵樹苗之間的距離CD為16m,在路燈的照射下,樹苗CE的影長CG為1m,樹苗DF的影長DH為3m,點G、C、B、D、H在一條直線上.求路燈AB的高度.24.(10分)如圖為正方形網(wǎng)格,每個小正方形的邊長均為1,各個小正方形的頂點叫做格點,請在下面的網(wǎng)格中按要求分別畫圖,使得每個圖形的頂點均在格點上.(1)在圖中畫一個以為一邊的菱形,且菱形的面積等于1.(2)在圖中畫一個以為對角線的正方形,并直接寫出正方形的面積.25.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣3,0),與y軸交于點B,且與正比例函數(shù)y=x的圖象交點為C(m,4).(1)求一次函數(shù)y=kx+b的解析式;(2)求△BOC的面積;(3)若點D在第二象限,△DAB為等腰直角三角形,則點D的坐標(biāo)為.26.如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點D,連結(jié)AD(AD<AB),將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.(1)請根據(jù)題意補(bǔ)全圖1;(2)猜測BD和CE的數(shù)量關(guān)系并證明;(3)作射線BD,CE交于點P,把△ADE繞點A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=2,AD=1時,補(bǔ)全圖形,直接寫出PB的長.
參考答案一、選擇題(每題4分,共48分)1、D【解析】分析:根據(jù)反比例函數(shù)的性質(zhì)一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當(dāng)k>0時,y隨x的增大而減小,錯誤,應(yīng)該是當(dāng)k>0時,在每個象限,y隨x的增大而減??;故本選項不符合題意;C.錯誤,應(yīng)該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì),靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.2、B【分析】三條平行線截兩條直線,所得的對應(yīng)線段成比例.直接根據(jù)平行線分線段成比例定理即可得出結(jié)論.【詳解】解:∵a∥b∥c,AC=8,CE=12,BD=6,
∴,即,解得:,故選:B.【點睛】本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對應(yīng)線段成比例是解答此題的關(guān)鍵.3、C【分析】根據(jù)比例的性質(zhì)即可得到結(jié)論.【詳解】解:∵2a=3b,∴故選:C.【點睛】此題主要考查比例的性質(zhì),解題的關(guān)鍵是熟知其變形.4、D【解析】根據(jù)一元二次方程的定義逐項進(jìn)行判斷即可.【詳解】A、是一元三次方程,故不符合題意;B、是分式方程,故不符合題意;C、是二元二次方程,故不符合題意;D、是一元二次方程,符合題意.故選:D.【點睛】本題考查一元二次方程的定義,熟練掌握定義是關(guān)鍵.5、A【分析】設(shè)PQ與AC交于點O,作⊥于,首先求出,當(dāng)P與重合時,PQ的值最小,PQ的最小值=2.【詳解】設(shè)與AC交于點O,作⊥于,如圖所示:
在Rt△ABC中,∠BAC=90,∠ACB=45,
∴,∵四邊形PAQC是平行四邊形,
∴,∵⊥,∠ACB=45,∴,當(dāng)與重合時,OP的值最小,則PQ的值最小,
∴PQ的最小值故選:A.【點睛】本題考查了勾股定理的運(yùn)用、平行四邊形的性質(zhì)以及垂線段最短的性質(zhì),利用垂線段最短求線段的最小值是解題的關(guān)鍵.6、B【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:如圖示,由分別過點A1、A2、A3,垂直于兩邊的垂線,由圖形的割補(bǔ)可知:一個陰影部分面積等于正方形面積的,即陰影部分的面積是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故選:B.【點睛】此題考查了正方形的性質(zhì),解決本題的關(guān)鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.7、C【分析】根據(jù)已知條件先求得S△ABE:S△BED=3:2,再根據(jù)三角形相似求得S△ACD=S△ABE=S△BED,根據(jù)S△ABC=S△ABE+S△ACD+S△BED即可求得.【詳解】解:∵AE:ED=3:2,
∴AE:AD=3:5,
∵∠ABE=∠C,∠BAE=∠CAD,
∴△ABE∽△ACD,
∴S△ABE:S△ACD=9:25,
∴S△ACD=S△ABE,
∵AE:ED=3:2,
∴S△ABE:S△BED=3:2,
∴S△ABE=S△BED,
∴S△ACD=S△ABE=S△BED,
∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,
∴S△BDE:S△ABC=3:20,
故選:C.【點睛】本題考查了相似三角形的判定和性質(zhì),不同底等高的三角形面積的求法等,等量代換是本題的關(guān)鍵.8、B【解析】連接AD∵∠AOD=90°,∴AD是圓的直徑.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,則圓的半徑是.故選B.點睛:連接AD.根據(jù)90°的圓周角所對的弦是直徑,得AD是直徑,根據(jù)等弧所對的圓周角相等,得∠D=∠B=30°,運(yùn)用解直角三角形的知識即可求解.9、C【分析】根據(jù)平行線所截的直線形成的線段的比例關(guān)系,可得,代數(shù)解答即可.【詳解】解:由題意得,,,解得.【點睛】本題考查了平行線截取直線所得的對應(yīng)線段的比例關(guān)系,理解掌握該比例關(guān)系列出比例式是解答關(guān)鍵.10、D【分析】根據(jù)勾股定理求出BC的長度,再根據(jù)cos函數(shù)的定義求解,即可得出答案.【詳解】∵AC=,AB=4,∠C=90°∴∴故答案選擇D.【點睛】本題考查的是勾股定理和三角函數(shù),比較簡單,需要熟練掌握sin函數(shù)、cos函數(shù)和tan函數(shù)分別代表的意思.11、D【分析】利用位似圖形的性質(zhì)得出位似比,進(jìn)而得出對應(yīng)點的坐標(biāo).【詳解】解:∵矩形OA′B′C′的面積等于矩形OABC面積的,
∴兩矩形面積的相似比為:1:2,
∵B的坐標(biāo)是(6,4),∴點B′的坐標(biāo)是:(3,2)或(-3,-2).
故選:D.【點睛】此題主要考查了位似變換的性質(zhì),得出位似圖形對應(yīng)點坐標(biāo)性質(zhì)是解題關(guān)鍵.12、B【分析】利用勾股數(shù)求出BC=4,根據(jù)銳角三角函數(shù)的定義,分別計算∠A的三角函數(shù)值即可.【詳解】解:如圖所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A錯誤;cosA=,故B正確;tanA=,故C錯誤;cosA=,故D錯誤;故選:B.【點睛】本題考查了銳角三角函數(shù)的定義,勾股數(shù)的應(yīng)用,掌握銳角三角函數(shù)的定義是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、(x+1);.【解析】試題分析:設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應(yīng)用.14、6﹣π【分析】利用勾股定理得出AB的長,再利用圖中陰影部分的面積是:S△ABC﹣S扇形面積求出即可.【詳解】解:∵Rt△ABC中,∠ABC=90°,AC=4,BC=3,∴AB==5,∴S陰影部分=×3×4﹣=6﹣π.故答案是:6﹣π.【點睛】此題主要考查不規(guī)則圖形的面積求解,解題的關(guān)鍵是熟知割補(bǔ)法的應(yīng)用.15、(,2).【解析】由題意得:,即點P的坐標(biāo).16、【分析】利用待定系數(shù)法求出提高效率后與的函數(shù)解析式,由此可得時,的值,然后即可得出答案.【詳解】由題意,可設(shè)提高效率后得與的函數(shù)解析式為將和代入得解得因此,與的函數(shù)解析式為當(dāng)時,則該公司提高工作效率前每小時完成的綠化面積故答案為:100.【點睛】本題考查了一次函數(shù)的實際應(yīng)用,依據(jù)圖象,利用待定系數(shù)法求出函數(shù)解析式是解題關(guān)鍵.17、【分析】先根據(jù)平方、絕對值的非負(fù)性求得、,再利用銳角三角函數(shù)確定、的度數(shù),最后根據(jù)直角三角形內(nèi)角和求得.【詳解】解:∵∴∴∴∴.故答案是:【點睛】本題考查了平方、絕對值的非負(fù)性,銳角三角函數(shù)以及三角形內(nèi)角和,熟悉各知識點是解題的關(guān)鍵.18、(3.76,0)【分析】根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.1,∴DE=3.76,∴E(3.76,0).故答案為:(3.76,0).【點睛】本題考查了中心投影,相似三角形的判定和性質(zhì),正確的識別圖形是解題的關(guān)鍵.三、解答題(共78分)19、(1)FG=CE,F(xiàn)G∥CE;(2)成立,理由見解析.【解析】(1)結(jié)論:FG=CE,F(xiàn)G∥CE,如圖1中,設(shè)DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可;(2)結(jié)論仍然成立,如圖2中,設(shè)DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.【詳解】(1)結(jié)論:FG=CE,F(xiàn)G∥CE.理由:如圖1中,設(shè)DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四邊形EGFC是平行四邊形.∴GF=EC,∴GF=EC,GF∥EC.故答案為FG=CE,F(xiàn)G∥CE;(2)結(jié)論仍然成立.理由:如圖2中,設(shè)DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四邊形EGFC是平行四邊形.∴GF=EC,∴GF=EC,GF∥EC.【點睛】本題三角形與四邊形綜合問題,涉及全等三角形的判定與性質(zhì),正方形的性質(zhì),平行四邊形的判定與性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.20、(1),;(2)【分析】(1)利用配方法解一元二次方程即可得出答案;(2)先將sin45°和tan60°的值代入,再計算即可得出答案.【詳解】解:(1)方程整理得:,配方得:,即,開方得:,解得:,;(2)原式.【點睛】本題考查的是解一元二次方程和三角函數(shù)值,比較簡單,需要牢記特殊三角函數(shù)值.21、見解析【分析】由題意可證△AEF∽△BDF,可得,即可得.【詳解】解:證明:∵AD,BE是△ABC的高,
∴∠ADB=∠AEF=90°,且∠AFE=∠BFD,∴△AEF∽△BDF,∴,
∴.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練運(yùn)用相似三角形的性質(zhì)是本題的關(guān)鍵.22、,此時方程的根為【分析】直接利用根的判別式≥0得出m的取值范圍進(jìn)而解方程得出答案.【詳解】解:∵關(guān)于x的方程x2-2x+2m-1=0有實數(shù)根,
∴b2-4ac=4-4(2m-1)≥0,
解得:m≤1,
∵m為正整數(shù),
∴m=1,
∴此時二次方程為:x2-2x+1=0,
則(x-1)2=0,
解得:x1=x2=1.【點睛】此題主要考查了根的判別式,正確得出m的值是解題關(guān)鍵.23、10m【分析】設(shè)BC的長度為x,根據(jù)題意得出△GCE∽△GBA,△HDF∽△HBA,進(jìn)而利用相似三角形的性質(zhì)列出關(guān)于x的方程.【詳解】解:設(shè)BC的長度為xm由題意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴,即==,即=∴=∴x=4∴AB=10答:路燈AB的高度為10m.【點睛】此題主要考查了相似三角形的應(yīng)用,得出△GCE∽△GBA,△HDF∽△HBA是解題關(guān)鍵.24、(1)圖見解析;(2)圖見解析,2.【分析】(1)根據(jù)菱形面積公式可得,底邊AB的高為4,結(jié)合AD=5即可得到點D的坐標(biāo),同理得到點C的坐標(biāo),連接A,C,D即可.(2)作線段EF的中線與網(wǎng)格交于G、H,且,依次連接E、G、F、H即可,利用正方形面積公式即可求得正方形的面積.【詳解】解:(1)根據(jù)菱形面積公式可得,底邊AB的高為4,結(jié)合AD=5即可得到點D的坐標(biāo),同理得到點C的坐標(biāo),連接A,C,D.如圖所示.(2)作線段EF的中線與網(wǎng)格交于G、H,且,依次連接E、G、F、H即可,如圖所示.正方形面積為2.【點睛】本題考查了網(wǎng)格作圖的問題,掌握菱形的性質(zhì)以及面積公式、正方形的性質(zhì)以及面積公式、勾股定理是解題的關(guān)鍵.25、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C點坐標(biāo)代入正比例函數(shù)解析式可求得m,再把A、C坐標(biāo)代入一次函數(shù)解析式可求得k、b,可求得答案;(2)先求出點B的坐標(biāo),然后根據(jù)三角形的面積公式即可得到結(jié)論;(3)由題意可分AB為直角邊和AB為斜邊兩種情況,當(dāng)AB為直角邊時,再分A為直角頂點和B為直角頂點兩種情況,此時分別設(shè)對應(yīng)的D點為D2和D1,過點D1作D1E⊥y軸于點E,過點D2作D2F⊥x軸于點F,可證明△BED1≌△AOB(AAS),可求得D1的坐標(biāo),同理可求得D2的坐標(biāo),AD1與BD2的交點D3就是AB為斜邊時的直角頂點,據(jù)此即可得出D點的坐標(biāo).【詳解】(1)∵點C(m,4)在正比例函數(shù)y=x的圖象上,∴m=4,解得:m=3,∴C(3,4),∵點C(3,4)、A(﹣3,0)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴一次函數(shù)的解析式為y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB為直角邊和AB為斜邊兩種情況,當(dāng)AB為直角邊時,分A為直角頂點和B為直角頂點兩種情況,如圖,過點D1作D1E⊥y軸于點E,過點D2作D2F⊥x軸于點F,∵點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,∴AB=BD1,∵∠D1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建立工作透明度的具體方案計劃
- 技術(shù)支持計劃
- 四川省成都市雙流中學(xué)2022-2023學(xué)年高三下學(xué)期高考模擬檢測(一)語文 無答案
- 湖北省荊州市重點高中2023-2024學(xué)年高一上學(xué)期12月學(xué)生素養(yǎng)測試數(shù)學(xué) 含解析
- 家園合作共育機(jī)制的實踐研究計劃
- 推動幼兒園音樂藝術(shù)教育的學(xué)校計劃
- 知識產(chǎn)權(quán)教育活動安排計劃
- 教學(xué)論文與經(jīng)驗交流分享計劃
- 生態(tài)公園保安管理與環(huán)境保護(hù)措施計劃
- 個人財務(wù)變革的必要性計劃
- 公共資源交易知識培訓(xùn)
- 《危機(jī)管理案例》課件
- DB13-T5687-2023負(fù)壓封閉引流術(shù)護(hù)理規(guī)范
- 海綿材料項目可行性研究報告
- 2025年四川成都地鐵運(yùn)營有限公司招聘筆試參考題庫含答案解析
- 【MOOC】《學(xué)術(shù)交流英語》(東南大學(xué))章節(jié)中國大學(xué)慕課答案
- 幼兒園閱讀活動環(huán)境創(chuàng)設(shè)
- 如何與人有效溝通培訓(xùn)
- 食品企業(yè)生產(chǎn)部門質(zhì)量獎懲條例
- 《婦產(chǎn)科學(xué)》課件-15.3絕經(jīng)綜合征
- 幼兒園中班彩虹泡泡龍課件
評論
0/150
提交評論