




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.三角尺在燈泡O的照射下在墻上形成的影子如圖所示,OA=20cm,OA′=50cm,則這個三角尺的周長與它在墻上形成的影子的周長的比是()A.5:2 B.2:5 C.4:25 D.25:42.二次函數的圖象可以由二次函數的圖象平移而得到,下列平移正確的是()A.先向右平移2個單位,再向上平移1個單位B.先向右平移2個單位,再向下平移1個單位C.先向左平移2個單位,再向上平移1個單位D.先向左平移2個單位,再向下平移1個單位3.如圖,⊙O中,弦AB、CD相交于點P,∠A=40°,∠APD=75°,則∠B的度數是()A.15° B.40° C.75° D.35°4.下列說法正確的是()A.購買江蘇省體育彩票有“中獎”與“不中獎”兩種情況,所以中獎的概率是B.國家級射擊運動員射靶一次,正中靶心是必然事件C.如果在若干次試驗中一個事件發生的頻率是,那么這個事件發生的概率一定也是D.如果車間生產的零件不合格的概率為,那么平均每檢查1000個零件會查到1個次品5.如圖,在△ABC中,DE∥BC,BE和CD相交于點F,且S△EFC=3S△EFD,則S△ADE:S△ABC的值為()A.1:3 B.1:8 C.1:9 D.1:46.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在A的下方,點E是邊長為2,中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為A.3 B. C.4 D.7.已知△ABC∽△A1B1C1,若△ABC與△A1B1C1的相似比為3:2,則△ABC與△A1B1C1的周長之比是()A.2:3 B.9:4 C.3:2 D.4:98.如圖,在正方形網格中,線段A′B′是線段AB繞某點順時針旋轉一定角度所得,點A′與點A是對應點,則這個旋轉的角度大小可能是()A.45° B.60° C.90° D.135°9.已知△ABC與△DEF相似且對應周長的比為4:9,則△ABC與△DEF的面積比為A.2:3 B.16:81C.9:4 D.4:910.已知反比例函數y=﹣,下列結論不正確的是()A.圖象必經過點(﹣1,3) B.若x>1,則﹣3<y<0C.圖象在第二、四象限內 D.y隨x的增大而增大二、填空題(每小題3分,共24分)11.如圖,中,,是線段上的一個動點,以為直徑畫分別交于連接,則線段長度的最小值為__________.12.如圖,、是⊙上的兩點,若,是⊙上不與點、重合的任一點,則的度數為__________.13.如圖,四邊形是菱形,經過點、、與相交于點,連接、,若,則的度數為__________.14.如圖,在□ABCD中,AB=5,AD=6,AD、AB、BC分別與⊙O相切于E、F、G三點,過點C作⊙O的切線交AD于點N,切點為M.當CN⊥AD時,⊙O的半徑為____.15.如圖,是一個半徑為6cm,面積為12πcm2的扇形紙片,現需要一個半徑為R的圓形紙片,使兩張紙片剛好能組合成圓錐體,則R等于_____cm.16.如圖,點A,B,C在⊙O上,CO的延長線交AB于點D,∠A=50°,∠B=30°,則∠ADC的度數為_____.17.如圖,,,,分別是正方形各邊的中點,順次連接,,,.向正方形區域隨機投擲一點,則該點落在陰影部分的概率是_______.18.線段,的比例中項是______.三、解答題(共66分)19.(10分)閱讀下列材料:小輝和小樂一起在學校寄宿三年了,畢業之際,他們想合理分配共同擁有的三件“財產”:一個電子詞典、一臺迷你唱機、一套珍藏版小說.他們本著“在尊重各自的價值偏好基礎上進行等值均分”的原則,設計了分配方案,步驟如下(相應的數額如表二所示):①每人各自定出每件物品在心中所估計的價值;②計算每人所有物品估價總值和均分值(均分:按總人數均分各自估價總值);③每件物品歸估價較高者所有;④計算差額(差額:每人所得物品的估價總值與均分值之差);⑤小樂拿225元給小輝,仍“剩下”的300元每人均分.依此方案,兩人分配的結果是:小輝拿到了珍藏版小說和375元錢,小樂拿到的電子詞典和迷你唱機,但要付出375元錢.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估價如表三所示,依照上述方案,請直接寫出分配結果;(2)小紅和小麗分配D,E兩件物品,兩人的估價如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下來,依據“在尊重各自的價值偏好基礎上進行等值均分”的原則,該怎么分配較為合理?請完成表四,并寫出分配結果.(說明:本題表格中的數值的單位均為“元”)20.(6分)直線與軸交于點,與軸交于點,拋物線經過兩點.(1)求這個二次函數的表達式;(2)若是直線上方拋物線上一點;①當的面積最大時,求點的坐標;②在①的條件下,點關于拋物線對稱軸的對稱點為,在直線上是否存在點,使得直線與直線的夾角是的兩倍,若存在,直接寫出點的坐標,若不存在,請說明理由.21.(6分)解方程:x2-7x-18=0.22.(8分)如圖一次函數y=kx+b的圖象與反比例函數y=(x>0)的圖象交于A(n,﹣1),B(,﹣4)兩點.(1)求反比例函數的解析式;(2)求一次函數的解析式;(3)若點C坐標為(0,2),求△ABC的面積.23.(8分)甲、乙兩人在玩轉盤游戲時,把兩個可以自由轉動的轉盤A、B分成4等份、3等份的扇形區域,并在每一小區域內標上數字(如圖所示),指針的位置固定.游戲規則:同時轉動兩個轉盤,當轉盤停止后,若指針所指兩個區域的數字之和為3的倍數,甲勝;若指針所指兩個區域的數字之和為4的倍數時,乙勝.如果指針落在分割線上,則需要重新轉動轉盤.(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;(2)請問這個游戲規則對甲、乙雙方公平嗎?試說明理由.24.(8分)已知△OAB在平面直角坐標系中的位置如圖所示.請解答以下問題:(1)按要求作圖:先將△ABO繞原點O逆時針旋轉90°得△OA1B1,再以原點O為位似中心,將△OA1B1在原點異側按位似比2:1進行放大得到△OA2B2;(2)直接寫出點A1的坐標,點A2的坐標.25.(10分)小明大學畢業回家鄉創業,第一期培植盆景與花卉各50盆售后統計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調研發現:①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.小明計劃第二期培植盆景與花卉共100盆,設培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)(1)用含x的代數式分別表示W1,W2;(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?26.(10分)如圖,在△ABC中,D為AC邊上一點,∠DBC=∠A.(1)求證:△BDC∽△ABC;(2)如果BC=,AC=3,求CD的長.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】先根據相似三角形對應邊成比例求出三角尺與影子的相似比,再根據相似三角形周長的比等于相似比解答即可.【詳解】如圖,∵OA=20cm,OA′=50cm,∴===∵三角尺與影子是相似三角形,∴三角尺的周長與它在墻上形成的影子的周長的比==2:5.故選B.2、C【解析】二次函數平移都是通過頂點式體現,將轉化為頂點式,與原式對比,利用口訣左加右減,上加下減,即可得到答案【詳解】解:∵,∴的圖形是由的圖形,向左平移2個單位,然后向上平移1個單位【點睛】本題主要考查二次函數圖形的平移問題,學生熟練掌握左加右減,上加下減即可解決這類題目3、D【分析】由,可知的度數,由圓周角定理可知,故能求出∠B.【詳解】,
,
由圓周角定理可知(同弧所對的圓周角相等),
在三角形BDP中,
,
所以D選項是正確的.【點睛】本題主要考查圓周角定理的知識點,還考查了三角形內角和為的知識點,基礎題不是很難.4、C【詳解】解:A、購買江蘇省體育彩票“中獎”的概率是中獎的張數與發行的總張數的比值,故本項錯誤;B、國家級射擊運動員射靶一次,正中靶心是隨機事件,故本項錯誤;C、如果在若干次試驗中一個事件發生的頻率是,那么這個事件發生的概率一定也是,正確;D、如果車間生產的零件不合格的概率為,那么平均每檢查1000個零件不一定會查到1個次品,故本項錯誤,故選C.【點睛】本題考查概率的意義,隨機事件.5、C【分析】根據題意,易證△DEF∽△CBF,同理可證△ADE∽△ABC,根據相似三角形面積比是對應邊比例的平方即可解答.【詳解】∵S△EFC=3S△DEF,∴DF:FC=1:3(兩個三角形等高,面積之比就是底邊之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故選:C.【點睛】本題考查相似三角形的判定和性質,解題的關鍵是掌握相似三角形面積比是對應邊比例的平方.6、B【分析】首先分析得到當點E旋轉至y軸正方向上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長.【詳解】如圖,當點E旋轉至y軸正方向上時DE最小.∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC.∵AB=BC=2,∴AD=AB?sin∠B=.∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,1),∴OA=1.∴.故選B.7、C【分析】直接利用相似三角形的性質求解.【詳解】解:∵△ABC與△A1B1C1的相似比為3:1,∴△ABC與△A1B1C1的周長之比3:1.故選:C.【點睛】本題考查了相似三角形的性質:相似三角形的對應角相等,對應邊的比相等;相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比;相似三角形的面積的比等于相似比的平方.8、C【分析】如圖:連接AA′,BB′,作線段AA′,BB′的垂直平分線交點為O,點O即為旋轉中心.連接OA,OB′,∠AOA′即為旋轉角.【詳解】解:如圖:連接AA′,BB′,作線段AA′,BB′的垂直平分線交點為O,點O即為旋轉中心.連接OA,OB′,∠AOA′即為旋轉角,∴旋轉角為90°故選:C.【點睛】本題考查了圖形的旋轉,掌握作圖的基本步驟是解題的關鍵9、B【解析】直接根據相似三角形周長的比等于相似比,面積比等于相似比的平方解答.【詳解】解:∵△ABC與△DEF相似且對應周長的比為4:9,∴△ABC與△DEF的相似比為4:9,∴△ABC與△DEF的面積比為16:81.故選B【點睛】本題考查的是相似三角形的性質,即相似三角形周長的比等于相似比,面積的比等于相似比的平方.10、D【解析】A.
∵(?1)×3=?3,∴圖象必經過點(?1,3),故正確;B.
∵k=?3<0,∴函數圖象的兩個分支分布在第二、四象限,故正確;C.
∵x=1時,y=?3且y隨x的增大而而增大,∴x>1時,?3<y<0,故正確;D.函數圖象的兩個分支分布在第二、四象限,在每一象限內,y隨x的增大而增大,故錯誤.故選D.二、填空題(每小題3分,共24分)11、.【詳解】解:如圖,連接,過點作,垂足為∵,∴.由∵,∴.而,則.在中,,∴.所以當最小即半徑最小時,線段長度取到最小值,故當時,線段長度最小.在中,,則此時的半徑為1,∴.故答案為:.12、或【分析】根據題意,可分為兩種情況:點C正在優弧和點C在劣弧,分別求出答案即可.【詳解】解:當點C在優弧上,則∵,∴;當點C在劣弧上時,則∵,∴,∴;∴的度數為:40°或140°;故答案為:40°或140°.【點睛】本題考查了圓周角定理,解題的關鍵是掌握同弧所對的圓周角等于圓心角的一半,注意分類討論進行解題.13、【分析】根據菱形的性質得到∠ACB=∠DCB=(180°?∠D)=51°,根據圓內接四邊形的性質得到∠AEB=∠D=78°,由三角形的外角的性質即可得到結論.【詳解】解:∵四邊形ABCD是菱形,∠D=78°,
∴∠ACB=∠DCB=(180°?∠D)=51°,
∵四邊形AECD是圓內接四邊形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB?∠ACE=27°,
故答案為:27°.【點睛】本題考查了菱形的性質,三角形的外角的性質,圓內接四邊形的性質,熟練掌握菱形的性質是解題的關鍵.14、2或1.5【分析】根據切線的性質,切線長定理得出線段之間的關系,利用勾股定理列出方程解出圓的半徑.【詳解】解:設半徑為r,∵AD、AB、BC分別與⊙O相切于E、F、G三點,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,
(7-r)2+(2r)2=52,解得r=2或1.5.故答案為:2或1.5.【點睛】本題考查了切線的性質,切線長定理,勾股定理,平行四邊形的性質,正確得出線段關系,列出方程是解題關鍵.15、2.【解析】能組合成圓錐體,那么扇形的弧長等于圓形紙片的周長.應先利用扇形的面積=圓錐的弧長母線長,得到圓錐的弧長=2扇形的面積母線長,進而根據圓錐的底面半徑=圓錐的弧長求解.【詳解】圓錐的弧長,
圓錐的底面半徑,
故答案為2.【點睛】解決本題的難點是得到圓錐的弧長與扇形面積之間的關系,注意利用圓錐的弧長等于底面周長這個知識點.16、110°【解析】試題分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案為110°.考點:圓周角定理.17、【分析】根據三角形中位線定理判定陰影部分是正方形,然后按照概率的計算公式進行求解.【詳解】解:連接AC,BD∵,,,分別是正方形各邊的中點∴,∠HEF=90°∴陰影部分是正方形設正方形邊長為a,則∴∴向正方形區域隨機投擲一點,則該點落在陰影部分的概率是故答案為:【點睛】本題考查三角形中位線定理及正方形的性質和判定以及概率的計算,掌握相關性質定理正確推理論證是本題的解題關鍵.18、【分析】根據比例中項的定義,若b是a,c的比例中項,即b2=ac.即可求解.【詳解】解:設線段c是線段a、b的比例中項,∴c2=ab,∵a=2,b=3,∴c=故答案為:【點睛】本題主要考查了線段的比例中項的定義,注意線段不能為負.三、解答題(共66分)19、(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)詳見解析.【分析】(1)按照分配方案的步驟進行分配即可;(2)按照分配方案的步驟進行分配即可.【詳解】解:(1)如下表:故分配結果如下:甲:拿到物品C和現金:元.乙:拿到現金元.丙:拿到物品A,B,付出現金:元.故答案為:甲:拿到物品C和現金:200元.乙:拿到現金450元.丙:拿到物品A,B,付出650元.(2)因為0<m-n<15所以所以即分配物品后,小莉獲得的“價值"比小紅高.高出的數額為:所以小莉需拿()元給小紅.所以分配結果為:小紅拿到物品D和()元錢,小莉拿到物品E并付出()元錢.【點睛】本題考查了代數式的應用,正確讀懂題干,理解分配方案是解題的關鍵.20、(1);(2)①;存在,或【分析】(1)先求得點的坐標,再代入求得b、c的值,即可得二次函數的表達式;(2)作交于點,,,,根據二次函數性質可求得.(3)求出,再根據直線與直線的夾角是的兩倍,得出線段的關系,用兩點間距離公式求出坐標.【詳解】解:如圖(1),;(2)作交于點.①設,,則:則時,最大,;(2),則,設,①若:則,∴;②若則,,作于,,與重合,關于對稱,∴【點睛】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求函數的解析式,三角形面積的巧妙求法,以及對稱點之間的關系.21、【分析】利用因式分解法求解即可.【詳解】因式分解,得于是得或故原方程的解為:.【點睛】本題考查了一元二次方程的解法,其主要解法包括:直接開方法、配方法、公式法、因式分解法(十字相乘法)等,熟記各解法是解題關鍵.22、(1)y=﹣;(2)y=2x﹣5;(3).【分析】(1)把點B代入解析式求解即可;(2)求出A點的坐標,然后代入解析式求解即可;(3)求出點D的坐標,根據S△ABC=S△ACD﹣S△BCD求解即可;【詳解】解:(1)∵一次函數y=kx+b的圖象與反比例函數y=(x>0)的圖象交于A(n,﹣1),B(,﹣4)兩點.∴m=×(﹣4)=﹣2,∴反比例函數的解析式y=﹣;(2)把A(n,﹣1)代入y=﹣得﹣1=﹣,∴n=2,∴A(2,﹣1),∵次函數y=kx+b的圖象經過A(2,﹣1),B(,﹣4),∴,解得:,∴一次函數解析式y=2x﹣5;(3)設一次函數解析式y=2x﹣5圖象交y軸為點D∴D(0,﹣5)∵C(0,2),∵S△ABC=S△ACD﹣S△BCD∴S△ABC=.【點睛】本題主要考查了一次函數與反比例函數的綜合應用,準確計算是解題的關鍵.23、(1);(2)游戲規則對甲、乙雙方不公平.【解析】(1)根據題意列出圖表,得出數字之和共有12種結果,其中“和是3的倍數”的結果有4種,再根據概率公式求出甲獲勝的概率.(2)根據圖表(1)得出)“和是4的倍數”的結果有3種,根據概率公式求出乙的概率,再與甲的概率進行比較,得出游戲是否公平.【詳解】解:(1)列表如下:∵數字之和共有12種結果,其中“和是3的倍數”的結果有4種,∴.(2)∵“和是4的倍數”的結果有3種,∴.∵,即P(甲獲勝)≠P(乙獲勝),∴這個游戲規則對甲、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共政策在道德與法律中的應用試題及答案
- 公共政策的社會影響評估試題及答案
- 2024年干氣制乙苯催化劑項目投資申請報告代可行性研究報告
- 軟考網絡工程師真實案例試題及答案
- 網絡工程師的行業前景展望試題及答案
- 軟件設計師應考策略總結試題及答案
- 文化政策的實施與反響試題及答案
- 2025年常州市村黨組織書記招聘鎮事業單位招聘筆試試卷
- 深度學習軟件設計師考試試題及答案
- 西方政治制度對少數群體權益的保障機制試題及答案
- 《生活環境和健康》課件
- 深圳律師法律服務產品清單(第二版)
- 會務服務投標方案(技術標)
- 小學語文教學如何滲透傳統文化教育
- 東南大學軸系設計報告
- 上海上海中學東校初一新生分班(摸底)語文考試模擬試卷(10套試卷帶答案解析)
- 新整理校園話劇!紀念偉大愛國詩人的話劇劇本《屈原》
- 工業相機與機器視覺知識考試題庫及答案
- 部編人教版四年級上冊語文 期末復習專項知識點梳理1 字音
- 《合理安排課余生活》(教案)蒙滬版四年級下冊綜合實踐活動
- 2023-2024學年江蘇省無錫市小學語文三年級期末高分考試題詳細參考答案解析
評論
0/150
提交評論