




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知是關于的一元二次方程的解,則等于()A.1 B.-2 C.-1 D.22.如圖,A、D是⊙O上的兩點,BC是直徑,若∠D=40°,則∠ACO=()A.80° B.70° C.60° D.50°3.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結論是(
).A. B. C. D.4.如圖,正方形中,,以為圓心,長為半徑畫,點在上移動,連接,并將繞點逆時針旋轉至,連接.在點移動的過程中,長度的最小值是()A. B. C. D.5.若反比例函數圖象上有兩個點,設,則不經過第()象限.A.一 B.二 C.三 D.四6.下列一元二次方程中,有一個實數根為1的一元二次方程是()A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=07.如圖,點E、F分別為正方形ABCD的邊BC、CD上一點,AC、BD交于點O,且∠EAF=45°,AE,AF分別交對角線BD于點M,N,則有以下結論:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上結論中,正確的個數有()個.A.1 B.2 C.3 D.48.如圖,是的直徑,,是圓周上的點,且,則圖中陰影部分的面積為()A. B. C. D.9.方程的根是()A. B.C. D.10.如圖是二次函數y=ax2+bx+c(a≠1)的圖象的一部分,給出下列命題:①a+b+c=1;②b>2a;③方程ax2+bx+c=1的兩根分別為﹣3和1;④當x<1時,y<1.其中正確的命題是()A.②③ B.①③ C.①② D.①③④11.若|a+3|+|b﹣2|=0,則ab的值為()A.﹣6B.﹣9C.9D.612.在平面直角坐標系中,反比例函數的圖象經過點(1,3),則的值可以為A. B. C. D.二、填空題(每題4分,共24分)13.在△ABC中,分別以AB,AC為斜邊作Rt△ABD和Rt△ACE,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,連接DE.若DE=5,則BC長為_____.14.拋物線y=﹣2x2+3x﹣7與y軸的交點坐標為_____.15.如圖,在?ABCD中,點E在DC邊上,若,則的值為_____.16.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.17.如果關于x的一元二次方程(m﹣2)x2﹣4x﹣1=0有實數根,那么m的取值范圍是_____.18.如圖,若被擊打的小球飛行高度(單位:)與飛行時間(單位:)之間具有的關系為,則小球從飛出到落地所用的時間為_____.三、解答題(共78分)19.(8分)已知等邊△ABC的邊長為2,(1)如圖1,在邊BC上有一個動點P,在邊AC上有一個動點D,滿足∠APD=60°,求證:△ABP~△PCD(2)如圖2,若點P在射線BC上運動,點D在直線AC上,滿足∠APD=120°,當PC=1時,求AD的長(3)在(2)的條件下,將點D繞點C逆時針旋轉120°到點D',如圖3,求△D′AP的面積.20.(8分)圖中的每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.線段和的端點均在格點上.(1)在圖中畫出以為一邊的,點在格點上,使的面積為4,且的一個角的正切值是;(2)在圖中畫出以為頂角的等腰(非直角三角形),點在格點上.請你直接寫出的面積.21.(8分)如圖1為放置在水平桌面上的臺燈,底座的高為,長度均為的連桿,與始終在同一平面上.當,時,如圖2,連桿端點離桌面的高度是多少?22.(10分)近日,國產航母山東艦成為了新晉網紅,作為我國本世紀建造的第一艘真正意義上的國產航母,承載了我們太多期盼,促使我國在偉大復興路上加速前行如圖,山東艦在一次測試中,巡航到海島A北偏東60°方向P處,發現在海島A正東方向有一可疑船只B正沿BA方向行駛。山東艦經測量得出:可疑船只在P處南偏東45°方向,距P處海里。山東艦立即從P沿南偏西30°方向駛出,剛好在C處成功攔截可疑船只。求被攔截時,可疑船只距海島A還有多少海里?(,結果精確到0.1海里)23.(10分)用一段長為30m的籬笆圍成一個邊靠墻的矩形菜園,墻長為18m(1)若圍成的面積為72m2,球矩形的長與寬;(2)菜園的面積能否為120m2,為什么?24.(10分)隨著冬季的來臨,為了方便冰雪愛好者雪上娛樂,某體育用品商店購進一批簡易滑雪板,每件進價為100元,售價為130元,每星期可賣出80件,由于商品庫存較多,商家決定降價促銷,根據市場調查,每件降價1元,每星期可多賣出4件.(1)設商家每件滑雪板降價x元,每星期的銷售量為y件,寫出y與x之間的函數關系式:(2)降價后,商家要使每星期的利潤最大,應將售價定為每件多少元?最大銷售利潤多少?25.(12分)如圖,是的直徑,弦于點,是上一點,,的延長線交于點.(1)求證:.(2)當平分,,,求弦的長.26.如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點(即這些小正方形的頂點)上,且它們的坐標分別是A(2,﹣3),B(5,﹣1),C(1,3),結合所給的平面直角坐標系,解答下列問題:(1)請在如圖坐標系中畫出△ABC;(2)畫出△ABC關于y軸對稱的△A'B'C',并寫出△A'B'C'各頂點坐標。
參考答案一、選擇題(每題4分,共48分)1、C【分析】方程的解就是能使方程的左右兩邊相等的未知數的值,因而把x=-1代入方程就得到一個關于m+n的方程,就可以求出m+n的值.【詳解】將x=1代入方程式得1+m+n=0,
解得m+n=-1.
故選:C.【點睛】此題考查一元二次方程的解,解題關鍵在于把求未知系數的問題轉化為解方程的問題.2、D【分析】根據圓周角的性質可得∠ABC=∠D,再根據直徑所對圓周角是直角,即可得出∠ACO的度數.【詳解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=(180°﹣∠AOC)=50°,故選:D.【點睛】本題考查圓周角的性質,關鍵在于熟練掌握圓周角的性質,特別是直徑所對的圓周角是直角.3、D【分析】根據平行線分線段成比例定理及相似三角形的判定與性質進行分析可得出結論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【點睛】考點:1.平行線分線段成比例;2.相似三角形的判定與性質.4、D【分析】通過畫圖發現,點的運動路線為以A為圓心、1為半徑的圓,當在對角線CA上時,C最小,先證明△PBC≌△BA,則A=PC=1,再利用勾股定理求對角線CA的長,則得出C的長.【詳解】如圖,當在對角線CA上時,C最小,連接CP,
由旋轉得:BP=B,∠PB=90°,
∴∠PBC+∠CB=90°,
∵四邊形ABCD為正方形,
∴BC=BA,∠ABC=90°,
∴∠AB+∠CB=90°,
∴∠PBC=∠AB,在△PBC和△BA中,,
∴△PBC≌△BA,
∴A=PC=1,
在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C長度的最小值為,故選:D.【點睛】本題考查了正方形的性質、旋轉的性質和最小值問題,尋找點的運動軌跡是本題的關鍵.5、C【分析】利用反比例函數的性質判斷出m的正負,再根據一次函數的性質即可判斷.【詳解】解:∵,∴a-1>0,∴圖象在三象限,且y隨x的增大而減小,∵圖象上有兩個點(x1,y1),(x2,y2),x1與y1同負,x2與y2同負,∴m=(x1-x2)(y1-y2)<0,∴y=mx-m的圖象經過一,二、四象限,不經過三象限,故選:C.【點睛】本題考查反比例函數的性質,一次函數的性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.6、D【分析】由題意,把x=1分別代入方程左邊,然后進行判斷,即可得到答案.【詳解】解:當x=1時,分別代入方程的左邊,則A、1+2=,故A錯誤;B、1-4+4=1,故B錯誤;C、1+4+10=15,故C錯誤;D、1+4-5=0,故D正確;故選:D.【點睛】本題考查了一元二次方程的解,解題的關鍵是分別把x=1代入方程進行解題.7、D【解析】如圖,把△ADF繞點A順時針旋轉90°得到△ABH,由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據全等三角形的性質得到EH=EF,所以∠ANM=∠AEB,則可求得②正確;根據三角形的外角的性質得到①正確;根據相似三角形的判定定理得到△OAM∽△DAF,故③正確;根據相似三角形的性質得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根據勾股定理得到AE=AN,再根據相似三角形的性質得到EF=MN,于是得到S△AEF=2S△AMN.故④正確.【詳解】如圖,把△ADF繞點A順時針旋轉90°得到△ABH由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正確∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正確,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正確連接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正確故選D.【點睛】此題考查相似三角形全等三角形的綜合應用,熟練掌握相似三角形,全等三角形的判定定理是解決此類題的關鍵.8、D【分析】連接OC,過點C作CE⊥OB于點E,根據圓周角定理得出,則有是等邊三角形,然后利用求解即可.【詳解】連接OC,過點C作CE⊥OB于點E∴是等邊三角形故選:D.【點睛】本題主要考查圓周角定理及扇形的面積公式,掌握圓周角定理及扇形的面積公式是解題的關鍵.9、A【分析】利用直接開平方法進行求解即可得答案.【詳解】,x-1=0,∴x1=x2=1,故選A.【點睛】本題考查解一元二次方程,根據方程的特點選擇恰當的方法是解題的關鍵.10、B【分析】利用x=1時,y=1可對①進行判斷;利用對稱軸方程可對②進行判斷;利用對稱性確定拋物線與x軸的另一個交點坐標為(-3,1),則根據拋物線與x軸的交點問題可對③進行判斷;利用拋物線在x軸下方對應的自變量的范圍可對④進行判斷.【詳解】∵x=1時,y=1,∴a+b+c=1,所以①正確;∵拋物線的對稱軸為直線x=﹣=﹣1,∴b=2a,所以②錯誤;∵拋物線與x軸的一個交點坐標為(1,1),而拋物線的對稱軸為直線x=﹣1,∴拋物線與x軸的另一個交點坐標為(﹣3,1),∴方程ax2+bx+c=1的兩根分別為﹣3和1,所以③正確;當﹣3<x<1時,y<1,所以④錯誤.故選:B.【點睛】本題考查的是拋物線的性質及對稱性,掌握二次函數的性質及其與一元二次方程的關系是關鍵.11、C【解析】根據非負數的性質可得a+3=1,b﹣2=1,解得a=﹣3,b=2,所以ab=(﹣3)2=9,故選C.點睛:本題考查了非負數的性質:幾個非負數的和為1時,這幾個非負數都為1.12、B【分析】把點(1,3)代入中即可求得k值.【詳解】解:把x=1,y=3代入中得,∴k=3.故選:B.【點睛】本題考查了用待定系數法求反比例函數的解析式,能理解把已知點的坐標代入解析式是解題關鍵.二、填空題(每題4分,共24分)13、1【分析】由在Rt△ABD和Rt△ACE中,∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,可證得△ABD∽△ACE,AD=AB,繼而可證得△ABC∽△ADE,然后由相似三角形的對應邊成比例,求得答案.【詳解】∵∠ADB=∠AEC=90°,∠ABD=∠ACE=30°,∴△ABD∽△ACE,AD=AB,∴∠BAD=∠CAE,AB:AC=AD:AE,∴∠BAC=∠DAE,AB:AD=AC:AE,∴△ABC∽△ADE,∴=2,∵DE=5,∴BC=1.故答案為:1.【點睛】此題考查了相似三角形的判定與性質以及含30度角的直角三角形.此題難度適中,注意掌握數形結合思想的應用.14、(0,﹣7)【分析】根據題意得出,然后求出y的值,即可以得到與y軸的交點坐標.【詳解】令,得,故與y軸的交點坐標是:(0,﹣7).故答案為:(0,﹣7).【點睛】本題考查了拋物線與y軸的交點坐標問題,掌握與y軸的交點坐標的特點()是解題的關鍵.15、【分析】由DE、EC的比例關系式,可求出EC、DC的比例關系;由于平行四邊形的對邊相等,即可得出EC、AB的比例關系,易證得∽,可根據相似三角形的對應邊成比例求出BF、EF的比例關系.【詳解】解:,;四邊形ABCD是平行四邊形,,;∽;;,.故答案為:.【點睛】此題主要考查了平行四邊形的性質以及相似三角形的判定和性質.靈活利用相似三角形性質轉化線段比是解題關鍵.16、【分析】首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.【點睛】本題考查了折疊的性質,全等三角形的判定與性質,三角函數的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數形結合思想與方程思想的應用.17、m≥﹣1且m≠1【分析】根據方程有實數根得出△=(﹣4)1﹣4×(m﹣1)×(﹣1)≥0,解之求出m的范圍,結合m﹣1≠0,即m≠1從而得出答案.【詳解】解:∵關于x的一元二次方程(m﹣1)x1﹣4x﹣1=0有實數根,∴△=(﹣4)1﹣4×(m﹣1)×(﹣1)≥0,解得:m≥﹣1,又∵m﹣1≠0,即m≠1,∴m≥﹣1且m≠1,故答案為:m≥﹣1且m≠1.【點睛】本題考查一元二次方程有意義的條件,熟悉一元二次方程有意義的條件是△≥0且二次項系數不為零是解題的關鍵.18、1.【分析】根據關系式,令h=0即可求得t的值為飛行的時間.【詳解】解:依題意,令得:∴得:解得:(舍去)或∴即小球從飛出到落地所用的時間為故答案為1.【點睛】本題考查了二次函數的性質在實際生活中的應用.此題為數學建模題,關鍵在于讀懂小球從飛出到落地即飛行的高度為0時的情形,借助二次函數解決實際問題.此題較為簡單.三、解答題(共78分)19、(1)見解析;(2);(3)【分析】(1)先利用三角形的內角和得出∠BAP+∠APB=120°,再用平角得出∠APB+∠CPD=120°,進而得出∠BAP=∠CPD,即可得出結論;(2)先構造出含30°角的直角三角形,求出PE,再用勾股定理求出PE,進而求出AP,再判斷出△ACP∽∠APD,得出比例式即可得出結論;(3)先求出CD,進而得出CD',再構造出直角三角形求出D'H,進而得出D'G,再求出AM,最后用面積差即可得出結論.【詳解】解:(1)∵△ABC是等邊三角形,∴∠B=∠C=60°,在△ABP中,∠B+∠APB+∠BAP=180°,∴∠BAP+∠APB=120°,∵∠APB+∠CPD=180°﹣∠APD=120°,∴∠BAP=∠CPD,∴△ABP∽△PCD;(2)如圖2,過點P作PE⊥AC于E,∴∠AEP=90°,∵△ABC是等邊三角形,∴AC=2,∠ACB=60°,∴∠PCE=60°,在Rt△CPE中,CP=1,∠CPE=90°﹣∠PCE=30°,∴CE=CP=,根據勾股定理得,PE=,在Rt△APE中,AE=AC+CE=2+=,根據勾股定理得,AP2=AE2+PE2=7,∵∠ACB=60°,∴∠ACP=120°=∠APD,∵∠CAP=∠PAD,∴△ACP∽△APD,∴,∴AD==;(3)如圖3,由(2)知,AD=,∵AC=2,∴CD=AD﹣AC=,由旋轉知,∠DCD'=120°,CD'=CD=,∵∠DCP=60°,∴∠ACD'=∠DCP=60°,過點D'作D'H⊥CP于H,在Rt△CHD'中,CH=CD'=,根據勾股定理得,D'H=CH=,過點D'作D'G⊥AC于G,∵∠ACD'=∠PCD',∴D'G=D'H=(角平分線定理),∴S四邊形ACPD'=S△ACD'+S△PCD'=AC?D'G+CP?DH'=×2×+×1×=,過點A作AM⊥BC于M,∵AB=AC,∴BM=BC=1,在Rt△ABM中,根據勾股定理得,AM=BM=,∴S△ACP=CP?AM=×1×=,∴S△D'AP=S四邊形ACPD'﹣S△ACP=﹣=.【點睛】此題主要考查四邊形綜合,解題的關鍵是熟知等邊三角形的性質、旋轉的特點及相似三角形的判定與性質、勾股定理的應用.20、(1)畫圖見解析;(2)畫圖見解析,1.【分析】(1)根據AB的長以及△ABE的面積可得出AB邊上的高為2,再直接利用正切的定義借助網格得出E點位置,再畫出△ABE即可;
(2)在網格中根據勾股定理可得出DC2=22+42,利用網格找出使CF2=DC2=22+42的點F即可,然后利用網格通過轉化法可求出△CDF的面積.【詳解】解:(1)設△ABE中AB邊上的高為EG,則S△ABE=×AB×EG=4,又AB=4,∴EG=2,假設∠A的正切值為,即tanA=,∴AG=1,∴點E的位置如圖所示,△ABE即為所求:
(2)根據勾股定理可得,DC2=22+42,∴CF2=DC2=22+42,所以點F的位置如圖所示,△DCF即為所求;
根據網格可得,△DCF的面積=4×4-×2×4-×2×4-×2×2=1.【點睛】此題主要考查了應用設計與作圖,正確借助網格分析是解題關鍵.21、【分析】作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.判斷四邊形PCHG是矩形,求出DP,CH,再加上AB即可求出DF.【詳解】解:如圖,作于,于,于,于.則四邊形是矩形,,,,,∴,,,.∴連桿端點D離桌面l的高度是.【點睛】本題考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.22、被攔截時,可疑船只距海島A還有57.7海里.【分析】過點P作于點D,在中,利用等腰直角三角形性質求出PD的長,在中,求出PC的長,再求的.可得.【詳解】解:過點P作于點D由題意可知,在中,∴在中,∴又∴∴∴(海里)即被攔截時,可疑船只距海島A還有57.7海里.【點睛】此題考查了解直角三角形的應用,熟練掌握直角三角形中三角函數的運用是解題的關鍵.23、(1)矩形的長為12米,寬為6米;(2)面積不能為120平方米,理由見解析【分析】(1)設垂直于墻的一邊長為x米,則矩形的另一邊長為(30﹣2x)米,根據面積為72米2列出方程,求解即可;(2)根據題意列出方程,用根的判別式判斷方程根的情況即可.【詳解】解:(1)設垂直于墻的一邊長為x米,則x(30﹣2x)=72,解方程得:x1=3,x2=12.當x=3時,長=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的長為12米,寬為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沙漠游記題目及答案解析
- 2023-2024學年山東省部分學校高二下學期期末聯合教學質量檢測數學試卷(解析版)
- 2023-2024學年湖北省十堰市高二下學期6月期末調研考試數學試卷(解析版)
- 2024-2025學年浙江省嘉興市高二上學期期末考試語文試題(解析版)
- 店面房屋租賃協議-房屋店面租賃合同模板-店面房屋租賃協議
- 高層建筑結構試題庫
- 高中語文選擇性必修下冊8《茶館》課件(32張課件)
- 飲酒檢討書范文
- 口服保肝藥講課件
- 佛山校園封閉管理制度
- 胃管置入術考試題及答案
- 2025年全國統一高考英語試卷(全國一卷)含答案
- 學院就業工作管理制度
- 吉林省吉林市名校2025年七下英語期末考試模擬試題含答案
- 2025年智能科技與數字經濟對社會交通出行方式與效率的影響報告
- 2025年機器人技術與應用開發考試試題及答案
- 2025屆福建省廈門市名校數學七下期末質量檢測試題含解析
- 國家能源集團陸上風電項目通 用造價指標(2024年)
- 【MOOC】跨文化交際-蘇州大學 中國大學慕課MOOC答案
- 材料物理知到智慧樹章節測試課后答案2024年秋南開大學
- 幸福心理學智慧樹知到答案2024年浙江大學
評論
0/150
提交評論