江蘇省鹽城市射陽縣2025屆九上數學期末監測試題含解析_第1頁
江蘇省鹽城市射陽縣2025屆九上數學期末監測試題含解析_第2頁
江蘇省鹽城市射陽縣2025屆九上數學期末監測試題含解析_第3頁
江蘇省鹽城市射陽縣2025屆九上數學期末監測試題含解析_第4頁
江蘇省鹽城市射陽縣2025屆九上數學期末監測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市射陽縣2025屆九上數學期末監測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在⊙O中,若點C是的中點,∠A=50°,則∠BOC=()A.40° B.45° C.50° D.60°2.若兩個相似三角形的周長之比是1:4,那么這兩個三角形的面積之比是()A.1:4 B.1:2 C.1:16 D.1:83.已知是一元二次方程的一個根,則等于()A. B.1 C. D.24.如圖,△ABC中,∠A=70°,AB=4,AC=6,將△ABC沿圖中的虛線剪開,則剪下的陰影三角形與原三角形不相似的是()A. B.C. D.5.如圖,矩形EFGO的兩邊在坐標軸上,點O為平面直角坐標系的原點,以y軸上的某一點為位似中心,作位似圖形ABCD,且點B,F的坐標分別為(﹣4,4),(2,1),則位似中心的坐標為()A.(0,3) B.(0,2.5) C.(0,2) D.(0,1.5)6.已知關于x的方程x2+ax﹣6=0的一個根是2,則a的值是()A.﹣1 B.0 C.1 D.27.若方程(m﹣1)x2﹣4x=0是關于x的一元二次方程,則m的取值范圍是()A.m≠1 B.m=1 C.m≠0 D.m≥18.拋物線y=2(x-1)2-6的對稱軸是().A.x=-6 B.x=-1 C.x= D.x=19.已知,且α是銳角,則α的度數是()A.30° B.45° C.60° D.不確定10.如圖,在矩形ABCD中,對角線AC,BD交與點O.已知∠AOB=60°,AC=16,則圖中長度為8的線段有()A.2條 B.4條C.5條 D.6條二、填空題(每小題3分,共24分)11.點P、Q兩點均在反比例函數的圖象上,且P、Q兩點關于原點成中心對稱,P(2,3),則點Q的坐標是_____.12.有四條線段,分別為3,4,5,6,從中任取三條,能夠成直角三角形的概率是13.某公司快遞員甲勻速騎車前往某小區送物件,出發幾分鐘后,快遞員乙發現甲的手機落在公司,無法聯系,于是乙勻速騎車去追趕甲.乙剛出發2分鐘時,甲也發現自己手機落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機給甲后立即原路原速返回公司,甲繼續原路原速趕往某小區送物件,甲乙兩人相距的路程y(米)與甲出發的時間x(分鐘)之間的關系如圖所示(乙給甲手機的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.14.在直角坐標平面內有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.15.小剛要測量一旗桿的高度,他發現旗桿的影子恰好落在一棟樓上,如圖,此時測得地面上的影長為8米,樓面上的影長為2米.同一時刻,一根長為1米、垂直于地面放置的標桿在地面上的影長為2米,則旗桿的高度為_______米.16.當_____時,在實數范圍內有意義.17.有一個二次函數的圖象,三位同學分別說了它的一些特點:甲:圖象與軸只有一個交點;乙:圖象的對稱軸是直線丙:圖象有最高點,請你寫出一個滿足上述全部特點的二次函數的解析式__________.18.一個圓錐的側面積是底面積的2倍,則圓錐側面展開圖扇形的圓心角是___.三、解答題(共66分)19.(10分)已知如圖AB∥EF∥CD,(1)△CFG∽△CBA嗎?為什么?(2)求的值.20.(6分)一個不透明的口袋里裝著分別標有數字,,0,2的四個小球,除數字不同外,小球沒有任何區別,每次實驗時把小球攪勻.(1)從中任取一球,求所抽取的數字恰好為負數的概率;(2)從中任取一球,將球上的數字記為,然后把小球放回;再任取一球,將球上的數字記為,試用畫樹狀圖(或列表法)表示出點所有可能的結果,并求點在直線上的概率.21.(6分)青青草原上,灰太狼每天都想著如何抓羊,而且是屢敗屢試,永不言棄.(如圖所示)一天,灰太狼在自家城堡頂部A處測得懶羊羊所在地B處的俯角為60°,然后下到城堡的C處,測得B處的俯角為30°.已知AC=50米,若灰太狼以5米/秒的速度從城堡底部D處出發,幾秒鐘后能抓到懶羊羊?(結果保留根號)22.(8分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E(1)求證:DE是⊙O的切線.(2)求DE的長.23.(8分)如圖,O為∠MBN角平分線上一點,⊙O與BN相切于點C,連結CO并延長交BM于點A,過點A作AD⊥BO于點D.(1)求證:AB為⊙O的切線;(2)若BC=6,tan∠ABC=,求AD的長.24.(8分)如圖,半圓O的直徑AB=10,將半圓O繞點B順時針旋轉45°得到半圓O′,與AB交于點P,求AP的長.25.(10分)小明和小軍兩人一起做游戲,游戲規則如下:每人從1,2,…,8中任意選擇一個數字,然后兩人各轉動一次如圖所示的轉盤(轉盤被分為面積相等的四個扇形),兩人轉出的數字之和等于誰事先選擇的數,誰就獲勝;若兩人轉出的數字之和不等于他們各自選擇的數,就在做一次上述游戲,直至決出勝負.若小軍事先選擇的數是5,用列表或畫樹狀圖的方法求他獲勝的概率.26.(10分)某學校的學生為了對小雁塔有基本的認識,在老師的帶領下對小雁塔進行了測量.測量方法如下:如圖,間接測得小雁塔地部點D到地面上一點E的距離為115.2米,小雁塔的頂端為點B,且BD⊥DE,在點E處豎直放一個木棒,其頂端為C,CE=1.72米,在DE的延長線上找一點A,使A、C、B三點在同一直線上,測得AE=4.8米.求小雁塔的高度.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】試題解析:∵點C是的中點,故選A.點睛:垂直于弦的直徑,平分弦并且平分弦所對的兩條弧.2、C【分析】根據相似三角形的面積的比等于相似比的平方可得答案.【詳解】解:∵相似三角形的周長之比是1:4,∴對應邊之比為1:4,∴這兩個三角形的面積之比是:1:16,故選C.【點睛】此題主要考查了相似三角形的性質,關鍵是掌握相似三角形的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.3、D【分析】直接把x=1代入方程得到關于m的方程,然后解關于m的方程即可.【詳解】解:把x=1代入得m-1-1+1=0,

解得m=1.

故選:D.【點睛】本題考查一元二次方程的解:能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.4、D【解析】試題解析:A、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;

B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;

C、兩三角形對應邊成比例且夾角相等,故兩三角形相似,故本選項錯誤.

D、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項正確;

故選D.5、C【解析】如圖,連接BF交y軸于P,

∵四邊形ABCD和四邊形EFGO是矩形,點B,F的坐標分別為(-4,4),(2,1),

∴點C的坐標為(0,4),點G的坐標為(0,1),

∴CG=3,

∵BC∥GF,∴,∴GP=1,PC=2,

∴點P的坐標為(0,2),

故選C.【點睛】本題考查的是位似變換的概念、坐標與圖形性質,掌握如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心是解題的關鍵.6、C【解析】一元二次方程的根就是能夠使方程左右兩邊相等的未知數的值.利用方程解的定義將x=2代入方程式即可求解.【詳解】解:將x=2代入x2+ax﹣6=2,得22+2a﹣6=2.解得a=2.故選C.【點睛】本題考查的是一元二次方程的根的定義,把求未知系數的問題轉化為解方程的問題.7、A【分析】根據只含有一個未知數,并且未知數的最高次數是2的整式方程叫一元二次方程可得m?1≠0,再解即可.【詳解】解:由題意得:m﹣1≠0,解得:m≠1,故選:A.【點睛】此題主要考查了一元二次方程定義,關鍵是掌握判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數”;“未知數的最高次數是2”;“二次項的系數不等于0”;“整式方程”.8、D【解析】根據拋物線的頂點式,直接得出結論即可.【詳解】解:∵拋物線y=2(x-1)2-6,

∴拋物線的對稱軸是x=1.

故選D.【點睛】本題考查了二次函數的性質,要熟悉二次函數的頂點式:y=a(x-h)2+k(a≠0),其頂點坐標為(h,k),對稱軸為x=h.9、C【分析】根據sin60°=解答即可.【詳解】解:∵α為銳角,sinα=,sin60°=,∴α=60°.故選:C.【點睛】本題考查的是特殊角的三角函數值,熟記特殊角的三角函數值是解題的關鍵.10、D【詳解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6條線段為1.故選D.二、填空題(每小題3分,共24分)11、【分析】由題意根據反比例函數的圖象是中心對稱圖形以及關于原點成中心對稱的點的坐標特征進行分析即可求解.【詳解】解:∵反比例函數的圖象是中心對稱圖形,且P、Q兩點關于原點成中心對稱,∴Q(﹣2,﹣3).故答案為:(﹣2,﹣3).【點睛】本題主要考查反比例函數圖象的中心對稱性,注意掌握反比例函數的圖象是中心對稱圖形以及關于原點成中心對稱的點的坐標特征.12、.【解析】試題分析:能構成三角形的情況為:3,4,5;3,4,6;3,5,6;4,5,6這四種情況.直角三角形只有3,4,5一種情況.故能夠成直角三角形的概率是.故答案為.考點:1.勾股定理的逆定理;2.概率公式.13、6000【分析】根據函數圖象和題意可以分別求得甲乙的速度和乙從與甲相遇到返回公司用的時間,從而可以求得當乙回到公司時,甲距公司的路程.【詳解】解:由題意可得,甲的速度為:4000÷(12-2-2)=500米/分,乙的速度為:=1000米/分,乙從與甲相遇到返回公司用的時間為4分鐘,則乙回到公司時,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),故答案為6000.【點睛】本題考查一次函數的應用,解答本題的關鍵是明確題意,利用數形結合的思想解答.14、【解析】根據勾股定理求出OA的長度,根據余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數的概念是解題關鍵.15、1【分析】直接利用已知構造三角形,利用同一時刻,實際物體與影長成比例進而得出答案.【詳解】如圖所示:由題意可得,DE=2米,BE=CD=8米,∵同一時刻,一根長為1米、垂直于地面放置的標桿在地面上的影長為2米,∴,解得:AB=4,故旗桿的高度AC為1米.故答案為:1.【點睛】此題主要考查了相似三角形的應用,正確構造三角形是解題關鍵.16、x≥1且x≠1【分析】二次根式及分式有意義的條件:被開方數為非負數,分母不為1,據此解答即可.【詳解】∵有意義,∴x≥1且﹣1≠1,∴x≥1且x≠1時,在實數范圍內有意義,故答案為:x≥1且x≠1【點睛】本題考查二次根式和分式有意義的條件,要使二次根式有意義,被開方數為非負數;要使分式有意義分母不為1.17、(答案不唯一)【解析】利用二次函數的頂點式解決問題即可.【詳解】由題意拋物線的頂點坐標為(3,0),設拋物線的解析式為y=a(x﹣3)1.∵開口向下,可取a=-1,∴拋物線的解析式為y=-(x﹣3)1.故答案為y=-(x﹣3)1(答案不唯一).【點睛】本題考查了拋物線與x軸的交點,二次函數的性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.18、180°【詳解】解:設底面圓的半徑為r,側面展開扇形的半徑為R,扇形的圓心角為n度.由題意得S底面面積=πr2,l底面周長=2πr,S扇形=2S底面面積=2πr2,l扇形弧長=l底面周長=2πr.由S扇形=l扇形弧長×R得2πr2=×2πr×R,故R=2r.由l扇形弧長=得:2πr=解得n=180°.故答案為:180°【點睛】本題考查扇形面積和弧長公式以及圓錐側面積的計算,掌握相關公式正確計算是解題關鍵.三、解答題(共66分)19、(1)△CFG∽△CBA,見解析;(2)【分析】(1)由題意利用相似三角形的判定定理-平行模型進行分析證明即可;(2)根據題意平行線分線段成比例定理進行分析求值.【詳解】解:(1)△CFG∽△CBA,理由如下,∵AB∥EF,∴FG∥AB,∴△CFG∽△CBA.(2)∵AB∥EF∥CD,∴,∴,∵△CFG∽△CBA,∴.【點睛】本題考查相似三角形的性質及平行線分線段成比例定理,解題的關鍵是熟練運用相似三角形的性質以及判定.20、(1)所抽取的數字恰好為負數的概率是;(2)點(x,y)在直線y=﹣x﹣1上的概率是.【分析】(1)四個數字中負數有2個,根據概率公式即可得出答案;

(2)根據題意列表得出所有等可能的情況數,找出點(x,y)落在直線y=-x-1上的情況數,再根據概率公式即可得出答案.【詳解】(1)∵共有4個數字,分別是﹣3,﹣1,0,2,其中是負數的有﹣3,﹣1,∴所抽取的數字恰好為負數的概率是=;(2)根據題意列表如下:﹣3﹣102﹣3(﹣3,﹣3)(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1(﹣3,﹣1)(﹣1,﹣1)(0,﹣1)(2,﹣1)0(﹣3,0)(﹣1,0)(0,0)(2,0)2(﹣3,2)(﹣1,2)(0,2)(2,2)所有等可能的情況有16種,其中點(x,y)在直線y=﹣x﹣1上的情況有4種,則點(x,y)在直線y=﹣x﹣1上的概率是=.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.21、灰太狼秒鐘后能抓到懶羊羊【分析】根據已知得出AC=BC,進而利用解直角三角形得出BD的長進一步可得到結果.【詳解】解;在Rt△BCD中∵∠BCD=90-30=60,∠CBD=30∴AC=BC=50m,在Rt△BCD中∴sin60=∴BD=BCsin60=m,設追趕時間為ts,由題意得:5t=∴t=s答:灰太狼秒鐘后能抓到懶羊羊.【點睛】此題考查解直角三角形的應用.注意能借助俯角構造直角三角形并解直角三角形是解題的關鍵,注意數形結合思想的應用.22、(1)詳見解析;(2)4.【解析】試題分析:(1)連結OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC∴OE⊥DE∴DE是⊙O的切線;(2)過點O作OF⊥AC于點F,∴AF=CF=3,∴OF=,∵∠OFE=∠DEF=∠ODE=90°,∴四邊形OFED是矩形,∴DE=OF=4.考點:切線的判定;垂徑定理;勾股定理;矩形的判定及性質.23、(1)見解析;(2)AD=2.【分析】(1)作OE⊥AB,先由∠AOD=∠BAD求得∠ABD=∠OAD,再由∠BCO=∠D=90°及∠BOC=∠AOD求得∠OBC=∠OAD=∠ABD,最后證△BOC≌△BOE得OE=OC,依據切線的判定可得;(2)先求得∠EOA=∠ABC,在Rt△ABC中求得AC=8,AB=10,由切線長定理知BE=BC=6,AE=4,OE=3,繼而得BO=3,根據相似三角形的性質即可得出結論.【詳解】解:(1)過點O作OE⊥AB于點E,∵O為∠MBN角平分線上一點,∴∠ABD=∠CBD,又∵BC為⊙O的切線,∴AC⊥BC,∵AD⊥BO于點D,∴∠D=90°,∴∠BCO=∠D=90°,∵∠BOC=∠AOD,∴∠BAD+∠ABD=90°,∠AOD+∠OAD=90°,∵∠AOD=∠BAD,∴∠ABD=∠OAD,∴∠OBC=∠OAD=∠ABD,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論