




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市實驗校2024年中考數學猜題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若方程x2﹣3x﹣4=0的兩根分別為x1和x2,則+的值是()A.1 B.2 C.﹣ D.﹣2.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.3.如右圖,⊿ABC內接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°4.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數為()A.45° B.60° C.70° D.90°5.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.6.下列計算中,正確的是()A.a?3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a7.如圖,已知,,則的度數為()A. B. C. D.8.下列關于x的方程一定有實數解的是()A. B.C. D.9.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)10.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=3二、填空題(本大題共6個小題,每小題3分,共18分)11.甲、乙兩個搬運工搬運某種貨物.已知乙比甲每小時多搬運600kg,甲搬運5000kg所用的時間與乙搬運8000kg所用的時間相等.設甲每小時搬運xkg貨物,則可列方程為_____.12.如圖,正五邊形ABCDE放入某平面直角坐標系后,若頂點A,B,C,D的坐標分別是(0,a),(﹣3,2),(b,m),(c,m),則點E的坐標是_____.13.下面是“利用直角三角形作矩形”尺規作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據是:__________________________________________________.14.如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y=在第一象限的圖象經過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為_______.15.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內部的點F處.若∠CBF=25°,則∠FDA的度數為_________.16.江蘇省的面積約為101600km1,這個數據用科學記數法可表示為_______km1.三、解答題(共8題,共72分)17.(8分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結論和有關定理就可以求出其余三個未知元素.根據上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現如今已對釣魚島執行常態化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結果精確到0.01,≈2.449)18.(8分)現有兩個紙箱,每個紙箱內各裝有4個材質、大小都相同的乒乓球,其中一個紙箱內4個小球上分別寫有1、2、3、4這4個數,另一個紙箱內4個小球上分別寫有5、6、7、8這4個數,甲、乙兩人商定了一個游戲,規則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得1分,若得到積是3的倍數,則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數和3的倍數的概率;(2)你認為這個游戲公平嗎?為什么?若你認為不公平,請你修改得分規則,使游戲對雙方公平.19.(8分)已知:如圖,,,.求證:.20.(8分)在“植樹節”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規則如下:在兩個盒子內分別裝入標有數字1,2,3,4的四個和標有數字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數字之和小于5,那么小王去,否則就是小李去.(1)用樹狀圖或列表法求出小王去的概率;(2)小李說:“這種規則不公平”,你認同他的說法嗎?請說明理由.21.(8分)如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉90°,得到△A1B1C1.求點C1在旋轉過程中所經過的路徑長.22.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.23.(12分)(1)計算:﹣14+sin61°+()﹣2﹣(π﹣)1.(2)解不等式組,并把它的解集在數軸上表示出來.24.服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當天對甲種服裝以每件優惠a(0<a<20)元的價格進行優惠促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:找出一元二次方程的系數a,b及c的值,利用根與系數的關系求出兩根之和與兩根之積,然后利用異分母分式的變形,將求出的兩根之和x1+x2=3與兩根之積x1?x2=﹣4代入,即可求出=.故選C.考點:根與系數的關系2、B【解析】
將k看做已知數求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數的值.3、A【解析】
連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A4、D【解析】已知△ABC繞點A按逆時針方向旋轉l20°得到△AB′C′,根據旋轉的性質可得∠BAB′=∠CAC′=120°,AB=AB′,根據等腰三角形的性質和三角形的內角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.5、A【解析】根據銳角三角函數的性質,可知cosA==,然后根據AC=2,解方程可求得AB=3.故選A.點睛:此題主要考查了解直角三角形,解題關鍵是明確直角三角形中,余弦值cosA=,然后帶入數值即可求解.6、C【解析】
根據同底數冪的運算法則進行判斷即可.【詳解】解:A、a?3a=3a2,故原選項計算錯誤;B、2a+3a=5a,故原選項計算錯誤;C、(ab)3=a3b3,故原選項計算正確;D、7a3÷14a2=a,故原選項計算錯誤;故選C.【點睛】本題考點:同底數冪的混合運算.7、B【解析】分析:根據∠AOC和∠BOC的度數得出∠AOB的度數,從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點睛:本題主要考查的是角度的計算問題,屬于基礎題型.理解各角之間的關系是解題的關鍵.8、A【解析】
根據一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數根,符合題意;
B.ax=3中當a=0時,方程無解,不符合題意;
C.由可解得不等式組無解,不符合題意;
D.有增根x=1,此方程無解,不符合題意;
故選A.【點睛】本題主要考查方程的解,解題的關鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.9、A【解析】
∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.10、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.二、填空題(本大題共6個小題,每小題3分,共18分)11、=【解析】
設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,根據甲搬運5000kg所用時間與乙搬運8000kg所用時間相等建立方程求出其解就可以得出結論.【詳解】解:設甲每小時搬運x千克,則乙每小時搬運(x+600)千克,由題意得:=.故答案是:=.【點睛】本題考查了由實際問題抽象出分式方程,根據題意找到等量關系是關鍵.12、(3,2).【解析】
根據題意得出y軸位置,進而利用正多邊形的性質得出E點坐標.【詳解】解:如圖所示:∵A(0,a),∴點A在y軸上,∵C,D的坐標分別是(b,m),(c,m),∴B,E點關于y軸對稱,∵B的坐標是:(﹣3,2),∴點E的坐標是:(3,2).故答案為:(3,2).【點睛】此題主要考查了正多邊形和圓,正確得出y軸的位置是解題關鍵.13、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】
先利用作法判定OA=OC,OD=OB,則根據平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.14、【解析】
設△OAC和△BAD的直角邊長分別為a、b,結合等腰直角三角形的性質及圖像可得出B的坐標,根據三角形的面積公式結合反比例函數系數k的幾何意義即可求解.【詳解】設△OAC和△BAD的直角邊長分別為a、b,則B點坐標為(a+b,a-b)∵點B在反比例函數y=在第一象限的圖象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=a2-b2=【點睛】此題主要考查等腰直角三角形的面積求法和反比例函數k值的定義,解題的關鍵是熟知等腰直角三角形的性質及反比例函數k值的性質.15、50°【解析】
延長BF交CD于G,根據折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數.【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.16、1.016×105【解析】
科學記數法就是將一個數字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪,【詳解】解:101600=1.016×105故答案為:1.016×105【點睛】本題考查科學計數法,掌握概念正確表示是本題的解題關鍵.三、解答題(共8題,共72分)17、(1)60,20;(2)漁政船距海島A的距離AB約為24.49海里.【解析】
(1)利用題目總結的正弦定理,將有關數據代入求解即可;(2)在△ABC中,分別求得BC的長和三個內角的度數,利用題目中總結的正弦定理求AC的長即可.【詳解】(1)由正玄定理得:∠A=60°,AC=20;故答案為60°,20;(2)如圖:依題意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,,即,解得AB=10≈24.49(海里).答:漁政船距海島A的距離AB約為24.49海里.【點睛】本題考查了方向角的知識,更重要的是考查了同學們的閱讀理解能力,通過材料總結出學生們沒有接觸的知識,并根據此知識點解決相關的問題,是近幾年中考的高頻考點.18、(1)34(2)游戲不公平,修改得分規則為:把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得7分,若得到的積是3的倍數,則乙得12分【解析】試題分析:(1)列表如下:共有16種情況,且每種情況出現的可能性相同,其中,乘積是2的倍數的有12種,乘積是3的倍數的有7種.∴P(兩數乘積是2的倍數)=P(兩數乘積是3的倍數)=(2)游戲不公平,修改得分規則為:把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得7分,若得到的積是3的倍數,則乙得12分考點:概率的計算點評:題目難度不大,考查基本概率的計算,屬于基礎題。本題主要是第二問有點難度,對游戲規則的確定,需要一概率為基礎。19、見解析【解析】
先通過∠BAD=∠CAE得出∠BAC=∠DAE,從而證明△ABC≌△ADE,得到BC=DE.【詳解】證明:∵∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC.
即∠BAC=∠DAE,
在△ABC和△ADE中,,
∴△ABC≌△ADE(SAS).
∴BC=DE.【點睛】本題考查三角形全等的判定方法和全等三角形的性質,判定兩個三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.20、(1);(2)規則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結果數,然后根據概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結果數,其中摸出的球上的數字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數與總情況數之比.21、(1)①見解析;②見解析;(1)1π.【解析】
(1)①利用點平移的坐標規律,分別畫出點A、B、C的對應點A1、B1、C1的坐標,然后描點可得△A1B1C1;②利用網格特點和旋轉的性質,分別畫出點A1、B1、C1的對應點A1、B1、C1即可;(1)根據弧長公式計算.【詳解】(1)①如圖,△A1B1C1為所作;②如圖,△A1B1C1為所作;(1)點C1在旋轉過程中所經過的路徑長=【點睛】本題考查了作圖﹣旋轉變換:根據旋轉的性質可知,對應角都相等,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.也考查了平移的性質.22、(1)見解析;(2)【解析】
(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據切線的性質得到OD⊥EF,從而可計算出DE的長,然后根據扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備預知維修管理制度
- 設計研發中心管理制度
- 評估外聘專家管理制度
- 診所藥品供貨管理制度
- 2025年中國滑動窗行業市場全景分析及前景機遇研判報告
- 調度系統設備管理制度
- 財務風險預警管理制度
- 貨代公司人員管理制度
- 貨架物品擺放管理制度
- 貨車油路直供管理制度
- 抗衰保養知識培訓課件
- 青海省重點名校2025屆中考生物最后一模試卷含解析
- 嬰幼兒喂養照護人工喂養的回應性照護課件
- 《傳奇歌后鄧紫棋》課件
- 畜牧課件豬生產學
- 礦山承包合同
- 房產公司檔案管理
- 安徽省合肥市肥西縣2024-2025學年上學期七年級數學期末測試卷
- 《無人機操控培訓材料》課件
- 2024年07月臨商銀行2024年校園招考46名工作人員筆試歷年參考題庫附帶答案詳解
- 第 12課《干點家務活》(說課稿)統編版道德與法治一年級下冊
評論
0/150
提交評論