內蒙古鄂爾多斯康巴什新區達標名校2023-2024學年中考數學適應性模擬試題含解析_第1頁
內蒙古鄂爾多斯康巴什新區達標名校2023-2024學年中考數學適應性模擬試題含解析_第2頁
內蒙古鄂爾多斯康巴什新區達標名校2023-2024學年中考數學適應性模擬試題含解析_第3頁
內蒙古鄂爾多斯康巴什新區達標名校2023-2024學年中考數學適應性模擬試題含解析_第4頁
內蒙古鄂爾多斯康巴什新區達標名校2023-2024學年中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古鄂爾多斯康巴什新區達標名校2023-2024學年中考數學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖是由5個大小相同的正方體搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.2.下列實數中,為無理數的是()A. B. C.﹣5 D.0.31563.a、b互為相反數,則下列成立的是()A.ab=1 B.a+b=0 C.a=b D.=-14.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規律,則第⑦個圖形中的鮮花盆數為()A.37 B.38 C.50 D.515.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.6.實數在數軸上的點的位置如圖所示,則下列不等關系正確的是()A.a+b>0 B.a-b<0 C.<0 D.>7.如果一組數據6、7、x、9、5的平均數是2x,那么這組數據的方差為()A.4 B.3 C.2 D.18.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°9.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.10.在同一平面直角坐標系中,一次函數y=kx﹣2k和二次函數y=﹣kx2+2x﹣4(k是常數且k≠0)的圖象可能是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.某種商品兩次降價后,每件售價從原來100元降到81元,平均每次降價的百分率是__________.12.化簡__________.13.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O、A),過P、O兩點的二次函數y1和過P、A兩點的二次函數y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數的最大值之和等于______.14.若一個反比例函數的圖象經過點A(m,m)和B(2m,-1),則這個反比例函數的表達式為______15.把小圓形場地的半徑增加5米得到大圓形場地,此時大圓形場地的面積是小圓形場地的4倍,設小圓形場地的半徑為x米,若要求出未知數x,則應列出方程(列出方程,不要求解方程).16.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點,且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數為___三、解答題(共8題,共72分)17.(8分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.(1)求AB的長(精確到0.1米,參考數據:);(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.18.(8分)如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當燈罩的軸線CO通過公路路面的中心線時照明效果最好.此時,路燈的燈柱AB的高應該設計為多少米.(結果保留根號)19.(8分)如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉,與AC邊交于點N.①根據條件補全圖形;②寫出DM與DN的數量關系并證明;③用等式表示線段BM、CN與BC之間的數量關系,(用含的銳角三角函數表示)并寫出解題思路.20.(8分)若關于的方程無解,求的值.21.(8分)如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.(1)“拋物線三角形”一定是三角形;(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點為對稱中心的矩形?若存在,求出過三點的拋物線的表達式;若不存在,說明理由.22.(10分)文藝復興時期,意大利藝術大師達.芬奇研究過用圓弧圍成的部分圖形的面積問題.已知正方形的邊長是2,就能求出圖中陰影部分的面積.證明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S陰影=S1+S6=S1+S2+S3=.23.(12分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.24.如圖,輪船從點A處出發,先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數據:2≈1.414

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】分析:根據從上面看得到的圖形是俯視圖,可得答案.詳解:從上面看第一列是兩個小正方形,第二列是一個小正方形,第三列是一個小正方形,故選:A.點睛:本題考查了簡單組合體的三視圖,從上面看得到的圖形是俯視圖.2、B【解析】

根據無理數的定義解答即可.【詳解】選項A、是分數,是有理數;選項B、是無理數;選項C、﹣5為有理數;選項D、0.3156是有理數;故選B.【點睛】本題考查了無理數的判定,熟知無理數是無限不循環小數是解決問題的關鍵.3、B【解析】

依據相反數的概念及性質即可得.【詳解】因為a、b互為相反數,所以a+b=1,故選B.【點睛】此題主要考查相反數的概念及性質.相反數的定義:只有符號不同的兩個數互為相反數,1的相反數是1.4、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數為則第⑥個圖形中的鮮花盆數為故選C.5、D【解析】

∵A(,),B(2,)兩點在雙曲線上,∴根據點在曲線上,點的坐標滿足方程的關系,得.∵,∴,解得.故選D.【詳解】請在此輸入詳解!6、C【解析】

根據點在數軸上的位置,可得a,b的關系,根據有理數的運算,可得答案.【詳解】解:由數軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數與數軸,利用點在數軸上的位置得出b<-1,0<a<1是解題關鍵,又利用了有理數的運算.7、A【解析】分析:先根據平均數的定義確定出x的值,再根據方差公式進行計算即可求出答案.詳解:根據題意,得:=2x解得:x=3,則這組數據為6、7、3、9、5,其平均數是6,所以這組數據的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數和方差的定義.平均數是所有數據的和除以數據的個數.方差是一組數據中各數據與它們的平均數的差的平方的平均數.8、C【解析】

由∠AOC=126°,可求得∠BOC的度數,然后由圓周角定理,求得∠CDB的度數.【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.9、C【解析】試題解析:左視圖如圖所示:故選C.10、C【解析】

根據一次函數與二次函數的圖象的性質,求出k的取值范圍,再逐項判斷即可.【詳解】解:A、由一次函數圖象可知,k>0,∴﹣k<0,∴二次函數的圖象開口應該向下,故A選項不合題意;B、由一次函數圖象可知,k>0,∴﹣k<0,-=>0,∴二次函數的圖象開口向下,且對稱軸在x軸的正半軸,故B選項不合題意;C、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故C選項符合題意;D、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故D選項不合題意;故選:C.【點睛】本題考查一次函數與二次函數的圖象和性質,解決此題的關鍵是熟記圖象的性質,此外,還要主要二次函數的對稱軸、兩圖象的交點的位置等.二、填空題(本大題共6個小題,每小題3分,共18分)11、10%【解析】

設降價的百分率為x,則第一次降價后的單價是原來的(1?x),第二次降價后的單價是原來的(1?x)2,根據題意列方程解答即可.【詳解】解:設降價的百分率為x,根據題意列方程得:100×(1?x)2=81解得x1=0.1,x2=1.9(不符合題意,舍去).所以降價的百分率為0.1,即10%.故答案為:10%.【點睛】本題考查了一元二次方程的應用.找到關鍵描述語,根據等量關系準確的列出方程是解決問題的關鍵.還要判斷所求的解是否符合題意,舍去不合題意的解.12、【解析】

根據分式的運算法則先算括號里面,再作乘法亦可利用乘法對加法的分配律求解.【詳解】解:法一、=(-)==2-m.

故答案為:2-m.

法二、原式===1-m+1

=2-m.

故答案為:2-m.【點睛】本題考查分式的加減和乘法,解決本題的關鍵是熟練運用運算法則或運算律.13、【解析】

此題考查了二次函數的最值,勾股定理,等腰三角形的性質和判定的應用,題目比較好,但是有一定的難度,屬于綜合性試題.【詳解】過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個二次函數的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設P(2x,0),根據二次函數的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,設P(2x,0),根據二次函數的對稱性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案為.【點睛】考核知識點:二次函數綜合題.熟記性質,數形結合是關鍵.14、【解析】【分析】根據反比例函數圖象上點的橫、縱坐標之積不變可得關于m的方程,解方程即可求得m的值,再由待定系數法即可求得反比例函數的解析式.【詳解】設反比例函數解析式為y=,由題意得:m2=2m×(-1),解得:m=-2或m=0(不符題意,舍去),所以點A(-2,-2),點B(-4,1),所以k=4,所以反比例函數解析式為:y=,故答案為y=.【點睛】本題考查了反比例函數,熟知反比例函數圖象上點的橫、縱坐標之積等于比例系數k是解題的關鍵.15、π(x+5)1=4πx1.【解析】

根據等量關系“大圓的面積=4×小圓的面積”可以列出方程.【詳解】解:設小圓的半徑為x米,則大圓的半徑為(x+5)米,根據題意得:π(x+5)1=4πx1,故答案為π(x+5)1=4πx1.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,本題等量關系比較明顯,容易列出.16、100°【解析】

由條件可證明△AMK≌△BKN,再結合外角的性質可求得∠A=∠MKN,再利用三角形內角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點睛】本題主要考查全等三角形的判定和性質及三角形內角和定理,利用條件證得△AMK≌△BKN是解題的關鍵.三、解答題(共8題,共72分)17、(1)24.2米(2)超速,理由見解析【解析】

(1)分別在Rt△ADC與Rt△BDC中,利用正切函數,即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.18、(10-4)米【解析】

延長OC,AB交于點P,△PCB∽△PAO,根據相似三角形對應邊比例相等的性質即可解題.【詳解】解:如圖,延長OC,AB交于點P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC?tan60°=米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴,∴PA===米,∴AB=PA﹣PB=()米.答:路燈的燈柱AB高應該設計為()米.19、(1);(2)(2)①見解析;②DM=DN,理由見解析;③數量關系:【解析】

(1)先利用等腰三角形的性質和三角形內角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;(2)①如圖,利用∠EDF=180°﹣2α畫圖;②先利用等腰三角形的性質得到DA平分∠BAC,再根據角平分線性質得到DE=DF,根據四邊形內角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后證明△MDE≌△NDF得到DM=DN;③先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,利用等量代換得到BM+CN=2BE,然后根據正弦定義得到BE=BDsinα,從而有BM+CN=BC?sinα.【詳解】(1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.故答案為:α;(2)①如圖:②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.∵DE⊥AB于點E,DF⊥AC于點F,∴DE=DF,∠MED=∠NFD=90°.∵∠A=2α,∴∠EDF=180°﹣2α.∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;③數量關系:BM+CN=BC?sinα.證明思路為:先由△MDE≌△NDF可得EM=FN,再證明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接著在Rt△BDE可得BE=BDsinα,從而有BM+CN=BC?sinα.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了等腰三角形的性質.20、【解析】分析:該分式方程無解的情況有兩種:(1)原方程存在增根;(2)原方程約去分母后,整式方程無解.詳解:去分母得:x(x-a)-1(x-1)=x(x-1),去括號得:x2-ax-1x+1=x2-x,移項合并得:(a+2)x=1.(1)把x=0代入(a+2)x=1,∴a無解;把x=1代入(a+2)x=1,解得a=1;(2)(a+2)x=1,當a+2=0時,0×x=1,x無解即a=-2時,整式方程無解.綜上所述,當a=1或a=-2時,原方程無解.故答案為a=1或a=-2.點睛:分式方程無解,既要考慮分式方程有增根的情形,又要考慮整式方程無解的情形.21、(1)等腰(2)(3)存在,【解析】解:(1)等腰(2)∵拋物線的“拋物線三角形”是等腰直角三角形,∴該拋物線的頂點滿足.∴.(3)存在.如圖,作△與△關于原點中心對稱,則四邊形為平行四邊形.當時,平行四邊形為矩形.又∵,∴△為等邊三角形.作,垂足為.∴.∴.∴.∴,.∴,.設過點三點的拋物線,則解之,得∴所求拋物線的表達式為.22、S1,S3,S4,S5,1【解析】

利用圖形的拼割,正方形的性質,尋找等面積的圖形,即可解決問題.【詳解】由題意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S陰影面積=S1+S6=S1+S1+S3=1.故答案為S1,S3,S4,S5,1.【點睛】考查正方形的性質、矩形的性質、扇形的面積等知識,解題的關鍵是靈活運用所學知識解決問題.23、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】

(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據AE=B′E,可得∠EAB′=∠EB′A,再根據∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論