2024屆江蘇省無錫市和橋區、張渚區達標名校中考五模數學試題含解析_第1頁
2024屆江蘇省無錫市和橋區、張渚區達標名校中考五模數學試題含解析_第2頁
2024屆江蘇省無錫市和橋區、張渚區達標名校中考五模數學試題含解析_第3頁
2024屆江蘇省無錫市和橋區、張渚區達標名校中考五模數學試題含解析_第4頁
2024屆江蘇省無錫市和橋區、張渚區達標名校中考五模數學試題含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省無錫市和橋區、張渚區達標名校中考五模數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各組數中,互為相反數的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|2.一次函數的圖象上有點和點,且,下列敘述正確的是A.若該函數圖象交y軸于正半軸,則B.該函數圖象必經過點C.無論m為何值,該函數圖象一定過第四象限D.該函數圖象向上平移一個單位后,會與x軸正半軸有交點3.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°4.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.5.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.66.下列計算正確的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b27.如圖是反比例函數(k為常數,k≠0)的圖象,則一次函數的圖象大致是()A. B. C. D.8.2017年5月5日國產大型客機C919首飛成功,圓了中國人的“大飛機夢”,它顏值高性能好,全長近39米,最大載客人數168人,最大航程約5550公里.數字5550用科學記數法表示為()A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×1039.計算的結果是(

)A. B. C. D.210.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.11.碳納米管的硬度與金剛石相當,卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學記數法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米12.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數y=x的圖象被⊙P截得的弦AB的長為,則a的值是_____.14.如圖,李明從A點出發沿直線前進5米到達B點后向左旋轉的角度為α,再沿直線前進5米,到達點C后,又向左旋轉α角度,照這樣走下去,第一次回到出發地點時,他共走了45米,則每次旋轉的角度α為_____.15.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是16.計算(﹣3)+(﹣9)的結果為______.17.已知二次函數,與的部分對應值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關于的方程的解為;④.其中,正確的有___________________.18.已知⊙O的面積為9πcm2,若點O到直線L的距離為πcm,則直線l與⊙O的位置關系是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務獻血.獻血時要對獻血者的血型進行檢測,檢測結果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結果進行統計,并根據這個統計結果制作了兩幅不完整的圖表:血型ABABO人數105(1)這次隨機抽取的獻血者人數為人,m=;補全上表中的數據;若這次活動中該市有3000人義務獻血,請你根據抽樣結果回答:從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?20.(6分)如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.(1)求拋物線的解析式;(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.21.(6分)小麗和哥哥小明分別從家和圖書館同時出發,沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發的時間x(min)之間的函數圖象如圖所示:(1)求兩人相遇時小明離家的距離;(2)求小麗離距離圖書館500m時所用的時間.22.(8分)如圖,點A是反比例函數y1=4x與一次函數y2=kx+b在x軸上方的圖象的交點,過點A作AC⊥x軸,垂足是點C,AC=OC.一次函數求點A的坐標;若梯形ABOC的面積是3,求一次函數y2=kx+b的解析式;結合這兩個函數的完整圖象:當y1>23.(8分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標,若不存在請說明理由。24.(10分)小馬虎做一道數學題,“已知兩個多項式,,試求.”其中多項式的二次項系數印刷不清楚.小馬虎看答案以后知道,請你替小馬虎求出系數“”;在(1)的基礎上,小馬虎已經將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結果.小馬虎在求解時,誤把“”看成“”,結果求出的答案為.請你替小馬虎求出“”的正確答案.25.(10分)某品牌手機去年每臺的售價y(元)與月份x之間滿足函數關系:y=﹣50x+2600,去年的月銷量p(萬臺)與月份x之間成一次函數關系,其中1﹣6月份的銷售情況如下表:月份(x)1月2月3月4月5月6月銷售量(p)3.9萬臺4.0萬臺4.1萬臺4.2萬臺4.3萬臺4.4萬臺(1)求p關于x的函數關系式;(2)求該品牌手機在去年哪個月的銷售金額最大?最大是多少萬元?(3)今年1月份該品牌手機的售價比去年12月份下降了m%,而銷售量也比去年12月份下降了1.5m%.今年2月份,經銷商決定對該手機以1月份價格的“八折”銷售,這樣2月份的銷售量比今年1月份增加了1.5萬臺.若今年2月份這種品牌手機的銷售額為6400萬元,求m的值.26.(12分)如圖,已知拋物線y=ax2﹣2ax+b與x軸交于A、B(3,0)兩點,與y軸交于點C,且OC=3OA,設拋物線的頂點為D.(1)求拋物線的解析式;(2)在拋物線對稱軸的右側的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;(3)若平行于x軸的直線與該拋物線交于M、N兩點(其中點M在點N的右側),在x軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.27.(12分)如圖,在△ABC中,∠C=90°,BC=4,AC=1.點P是斜邊AB上一點,過點P作PM⊥AB交邊AC或BC于點M.又過點P作AC的平行線,與過點M的PM的垂線交于點N.設邊AP=x,△PMN與△ABC重合部分圖形的周長為y.(1)AB=.(2)當點N在邊BC上時,x=.(1)求y與x之間的函數關系式.(4)在點N位于BC上方的條件下,直接寫出過點N與△ABC一個頂點的直線平分△ABC面積時x的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據相反數的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數,正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數,故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數的定義,解題的關鍵是掌握相反數的定義.2、B【解析】

利用一次函數的性質逐一進行判斷后即可得到正確的結論.【詳解】解:一次函數的圖象與y軸的交點在y軸的正半軸上,則,,若,則,故A錯誤;

把代入得,,則該函數圖象必經過點,故B正確;

當時,,,函數圖象過一二三象限,不過第四象限,故C錯誤;

函數圖象向上平移一個單位后,函數變為,所以當時,,故函數圖象向上平移一個單位后,會與x軸負半軸有交點,故D錯誤,

故選B.【點睛】本題考查了一次函數圖象上點的坐標特征、一次函數圖象與幾何變換,解題的關鍵是熟練掌握一次函數的性質,靈活應用這些知識解決問題,屬于中考常考題型.3、B【解析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.4、C【解析】試題解析:左視圖如圖所示:故選C.5、B【解析】

作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉90°得到△ABD,根據旋轉的性質得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉90°,點O的對應B點,即把△AOC繞點A逆時針旋轉90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=kx(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k6、D【解析】A、原式=a2﹣4,不符合題意;B、原式=a2﹣a﹣2,不符合題意;C、原式=a2+b2+2ab,不符合題意;D、原式=a2﹣2ab+b2,符合題意,故選D7、B【解析】根據圖示知,反比例函數的圖象位于第一、三象限,∴k>0,∴一次函數y=kx?k的圖象與y軸的交點在y軸的負半軸,且該一次函數在定義域內是增函數,∴一次函數y=kx?k的圖象經過第一、三、四象限;故選:B.8、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:5550=5.55×1.故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、C【解析】

化簡二次根式,并進行二次根式的乘法運算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點睛】本題主要考查二次根式的化簡以及二次根式的混合運算.10、B【解析】

由折疊的性質得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結論EF=DF;易得FC=FA,設FA=x,則FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到關于x的方程x2=42+(6-x)2,解方程求出x即可.【詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,

∴AE=AB,∠E=∠B=90°,

又∵四邊形ABCD為矩形,

∴AB=CD,

∴AE=DC,

而∠AFE=∠DFC,

∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),

∴EF=DF;

∵四邊形ABCD為矩形,

∴AD=BC=6,CD=AB=4,

∵Rt△AEF≌Rt△CDF,

∴FC=FA,

設FA=x,則FC=x,FD=6-x,

在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【點睛】考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應邊相等.也考查了矩形的性質和三角形全等的判定與性質以及勾股定理.11、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負指數科學計數法中,其中,n等于第一個非0數字前所有0的個數(包括下數點前面的0).12、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2+【解析】

試題分析:過P點作PE⊥AB于E,過P點作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據勾股定理得:PE=1,∵點A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【點睛】本題主要考查的就是垂徑定理的應用以及直角三角形勾股定理的應用,屬于中等難度的題型.解決這個問題的關鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個條件的應用也是很重要的.14、.【解析】

根據共走了45米,每次前進5米且左轉的角度相同,則可計算出該正多邊形的邊數,再根據外角和計算左轉的角度.【詳解】連續左轉后形成的正多邊形邊數為:,則左轉的角度是.故答案是:.【點睛】本題考查了多邊形的外角計算,正確理解多邊形的外角和是360°是關鍵.15、4【解析】

當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質,垂徑定理,平行線的性質,此類問題是初中數學的重點和難點,在中考中極為常見,一般以壓軸題形式出現,難度較大.16、-1【解析】試題分析:利用同號兩數相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.17、①③.【解析】

根據圖表求出函數對稱軸,再根據圖表信息和二次函數性質逐一判斷即可.【詳解】由二次函數y=ax2+bx+c(a≠0),y與x的部分對應值可知:該函數圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結論正確;②b2﹣4ac=0,結論錯誤,應該是b2﹣4ac>0;③關于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結論正確;④m=﹣3,結論錯誤,其中,正確的有.①③故答案為:①③【點睛】本題考查了二次函數的圖像,結合圖表信息是解題的關鍵.18、相離【解析】

設圓O的半徑是r,根據圓的面積公式求出半徑,再和點0到直線l的距離π比較即可.【詳解】設圓O的半徑是r,則πr2=9π,∴r=3,∵點0到直線l的距離為π,∵3<π,即:r<d,∴直線l與⊙O的位置關系是相離,故答案為:相離.【點睛】本題主要考查對直線與圓的位置關系的理解和掌握,解此題的關鍵是知道當r<d時相離;當r=d時相切;當r>d時相交.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.【解析】【分析】(1)用AB型的人數除以它所占的百分比得到隨機抽取的獻血者的總人數,然后用B型的人數除以抽取的總人數即可求得m的值;(2)先計算出O型的人數,再計算出A型人數,從而可補全上表中的數據;(3)用樣本中A型的人數除以50得到血型是A型的概率,然后用3000乘以此概率可估計這3000人中是A型血的人數.【詳解】(1)這次隨機抽取的獻血者人數為5÷10%=50(人),所以m=×100=20,故答案為50,20;(2)O型獻血的人數為46%×50=23(人),A型獻血的人數為50﹣10﹣5﹣23=12(人),補全表格中的數據如下:血型ABABO人數1210523故答案為12,23;(3)從獻血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估計這3000人中大約有720人是A型血.【點睛】本題考查了扇形統計圖、統計表、概率公式、用樣本估計總體等,讀懂統計圖、統計表,從中找到必要的信息是解題的關鍵;隨機事件A的概率P(A)=事件A可能出現的結果數除以所有可能出現的結果數.20、解:(1);(2)存在,P(,);(1)Q點坐標為(0,-)或(0,)或(0,-1)或(0,-1).【解析】

(1)已知點A坐標可確定直線AB的解析式,進一步能求出點B的坐標.點A是拋物線的頂點,那么可以將拋物線的解析式設為頂點式,再代入點B的坐標,依據待定系數法可解.(2)首先由拋物線的解析式求出點C的坐標,在△POB和△POC中,已知的條件是公共邊OP,若OB與OC不相等,那么這兩個三角形不能構成全等三角形;若OB等于OC,那么還要滿足的條件為:∠POC=∠POB,各自去掉一個直角后容易發現,點P正好在第二象限的角平分線上,聯立直線y=-x與拋物線的解析式,直接求交點坐標即可,同時還要注意點P在第二象限的限定條件.(1)分別以A、B、Q為直角頂點,分類進行討論,找出相關的相似三角形,依據對應線段成比例進行求解即可.【詳解】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=1,∴B的坐標是(1,0).∵A為頂點,∴設拋物線的解析為y=a(x﹣1)2﹣4,把B(1,0)代入得:4a﹣4=0,解得a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣1.(2)存在.∵OB=OC=1,OP=OP,∴當∠POB=∠POC時,△POB≌△POC,此時PO平分第二象限,即PO的解析式為y=﹣x.設P(m,﹣m),則﹣m=m2﹣2m﹣1,解得m=(m=>0,舍),∴P(,).(1)①如圖,當∠Q1AB=90°時,△DAQ1∽△DOB,∴,即=,∴DQ1=,∴OQ1=,即Q1(0,-);②如圖,當∠Q2BA=90°時,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如圖,當∠AQ1B=90°時,作AE⊥y軸于E,則△BOQ1∽△Q1EA,∴,即∴OQ12﹣4OQ1+1=0,∴OQ1=1或1,即Q1(0,﹣1),Q4(0,﹣1).綜上,Q點坐標為(0,-)或(0,)或(0,﹣1)或(0,﹣1).21、(1)兩人相遇時小明離家的距離為1500米;(2)小麗離距離圖書館500m時所用的時間為分.【解析】

(1)根據題意得出小明的速度,進而得出得出小明離家的距離;(2)由(1)的結論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設小麗離距離圖書館500m時所用的時間為x分,根據題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書館500m時所用的時間為分.【點睛】本題由函數圖像獲取信息,以及一元一次方程的應用,由函數圖像正確獲取信息是解答本題的關鍵.22、(1)點A的坐標為(2,2);(2)y=12x+1;(3)x<-4【解析】

(1)點A在反比例函數y1=4x上,AC⊥x軸,(2)梯形面積=12(OB+2)×2=3,求出B點坐標,將點A(3)結合圖象直接可求解;【詳解】解:(1)∵點A在y1=4x的圖像上,∴AC?OC=4,∴AC=OC=2∴點A的坐標為(2,2);(2)∵梯形ABOC的面積是3,∴12解得OB=1,∴點B的坐標為(0,1),把點A(2,2)與B(0,1)代入y得2=2k+b解得:k=12,∴一次函數y2=kx+b的解析式為(3)由題意可知,作出函數y1=4設函數y1=4∴聯立y1=4∴點E的坐標為(-4,-1)∵y1>y2即∴可將圖像分割成如下圖所示:由圖像可知y1>y2所對應的自變量的取值范圍為:【點睛】本題考查反比例函數和一次函數的圖形及性質;能夠熟練掌握待定系數法求函數的表達式,數形結合求x的取值范圍是解題的關鍵.23、(1);(2)(3,-4)或(5,4)或(-5,4)【解析】

(1)設|OA|=1,確定A,B,C三點坐標,然后用待定系數法即可完成;(2)先畫出存在的點,然后通過平移和計算確定坐標;【詳解】解:(1)設|OA|=1,則A(-1,0),B(4,0)C(0,4)設拋物線的解析式為y=ax2+bx+c則有:解得所以函數解析式為:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如圖:P1相當于C點向右平移了5個單位長度,則坐標為(5,4);P2相當于C點向左平移了5個單位長度,則坐標為(-5,4);設P3坐標為(m,n)在第四象限,要使AP3BC是平行四邊形,則有AP3=BC,BP3=AC∴即(舍去)P3坐標為(3,-4)【點睛】本題主要考查了二次函數綜合題,此題涉及到待定系數法求二次函數解析式,通過作圖確認平行四邊形存在,然后通過觀察和計算確定P點坐標;解題的關鍵在于規范作圖,以便于樹形結合.24、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】

(1)根據整式加減法則可求出二次項系數;(2)表示出多項式,然后根據的結果求出多項式,計算即可求出答案.【詳解】(1)由題意得,,A+2B=(4+)+2-8,4+=1,=-3,即系數為-3.(2)A+C=,且A=,C=4,AC=【點睛】本題主要考查了多項式加減運算,熟練掌握運算法則是解題關鍵.25、(1)p=0.1x+3.8;(2)該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3)m的值為1.【解析】

(1)直接利用待定系數法求一次函數解析式即可;(2)利用銷量×售價=銷售金額,進而利用二次函數最值求法求出即可;(3)分別表示出1,2月份的銷量以及售價,進而利用今年2月份這種品牌手機的銷售額為6400萬元,得出等式求出即可.【詳解】(1)設p=kx+b,把p=3.9,x=1;p=4.0,x=2分別代入p=kx+b中,得:解得:,∴p=0.1x+3.8;(2)設該品牌手機在去年第x個月的銷售金額為w萬元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,當x=7時,w最大=10125,答:該品牌手機在去年七月份的銷售金額最大,最大為10125萬元;(3)當x=12時,y=100,p=5,1月份的售價為:100(1﹣m%)元,則2月份的售價為:0.8×100(1﹣m%)元;1月份的銷量為:5×(1﹣1.5m%)萬臺,則2月份的銷量為:[5×(1﹣1.5m%)+1.5]萬臺;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=1,答:m的值為1.【點睛】此題主要考查了二次函數的應用以及待定系數法求一次函數解析式,根據題意表示出2月份的銷量與售價是解題關鍵.26、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).【解析】

(1)根據拋物線的解析式,可得到它的對稱軸方程,進而可根據點B的坐標來確定點A的坐標,已知OC=1OA,即可得到點C的坐標,利用待定系數法即可求得該拋物線的解析式.(2)求出點C關于對稱軸的對稱點,求出兩點間的距離與CD相比較可知,PC不可能與CD相等,因此要分兩種情況討論:①CD=PD,根據拋物線的對稱性可知,C點關于拋物線對稱軸的對稱點滿足P點的要求,坐標易求得;②PD=PC,可設出點P的坐標,然后表示出PC、PD的長,根據它們的等量關系列式求出點P的坐標.(1)此題要分三種情況討論:①點Q是直角頂點,那么點Q必為拋物線對稱軸與x軸的交點,由此求得點Q的坐標;②M、N在x軸上方,且以N為直角頂點時,可設出點N的坐標,根據拋

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論