




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年姚安縣中考五模數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π2.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(
)A.1
B.-1
C.2
D.-23.下列命題是假命題的是()A.有一個外角是120°的等腰三角形是等邊三角形B.等邊三角形有3條對稱軸C.有兩邊和一角對應相等的兩個三角形全等D.有一邊對應相等的兩個等邊三角形全等4.下列各數(shù)中,最小的數(shù)是()A.0 B. C. D.5.等腰三角形三邊長分別為,且是關于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或106.如圖是由若干個小正方體組成的幾何體從上面看到的圖形,小正方形中的數(shù)字表示該位置小正方體的個數(shù),這個幾何體從正面看到的圖形是()A. B. C. D.7.在一次體育測試中,10名女生完成仰臥起坐的個數(shù)如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個數(shù)不少于50個的頻率為()A.0.3 B.0.4 C.0.5 D.0.68.在平面直角坐標系中,點(2,3)所在的象限是(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限9.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側C.有兩個交點,且它們均在軸同側 D.無交點10.“五一”期間,某市共接待海內(nèi)外游客約567000人次,將567000用科學記數(shù)法表示為()A.567×103B.56.7×104C.5.67×105D.0.567×10611.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm12.已知二次函數(shù)的圖象如圖所示,則下列結論:①ac>0;②a-b+c<0;
當時,;,其中錯誤的結論有A.②③ B.②④ C.①③ D.①④二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若二次根式有意義,則x的取值范圍為__________.14.邊長為6的正六邊形外接圓半徑是_____.15.計算:|﹣3|+(﹣1)2=.16.如圖,角α的一邊在x軸上,另一邊為射線OP,點P(2,2),則tanα=_____.17.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是_______.18.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).20.(6分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個交點,求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,則另一個交點的坐標為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點A(3,0),連接AC,點P是拋物線位于線段AC下方圖象上的任意一點,求△PAC面積的最大值.21.(6分)如圖,是5×5正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.22.(8分)某校對學生就“食品安全知識”進行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學生900人,估計該校學生對“食品安全知識”非常了解的人數(shù).23.(8分)如圖,在四邊形ABCD中,點E是對角線BD上的一點,EA⊥AB,EC⊥BC,且EA=EC.求證:AD=CD.24.(10分)如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.(1)求∠BCD的度數(shù).(2)求教學樓的高BD.(結果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)25.(10分)為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).類別分數(shù)段A50.5~60.5B60.5~70.5C70.5~80.5D80.5~90.5E90.5~100.5請你根據(jù)上面的信息,解答下列問題.(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;(3)若成績在80分以上為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?26.(12分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設拋物線的對稱軸與x軸交于點P,D為第四象限內(nèi)的一點,若△CPD為等腰直角三角形,求出D點坐標.27.(12分)對幾何命題進行逆向思考是幾何研究中的重要策略,我們知道,等腰三角形兩腰上的高線相等,那么等腰三角形兩腰上的中線,兩底角的角平分線也分別相等嗎?它們的逆命題會正確嗎?(1)請判斷下列命題的真假,并在相應命題后面的括號內(nèi)填上“真”或“假”.①等腰三角形兩腰上的中線相等;②等腰三角形兩底角的角平分線相等;③有兩條角平分線相等的三角形是等腰三角形;(2)請寫出“等腰三角形兩腰上的中線相等”的逆命題,如果逆命題為真,請畫出圖形,寫出已知、求證并進行證明,如果不是,請舉出反例.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質(zhì),解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.2、A【解析】試題分析:根據(jù)角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A3、C【解析】解:A.外角為120°,則相鄰的內(nèi)角為60°,根據(jù)有一個角為60°的等腰三角形是等邊三角形可以判斷,故A選項正確;B.等邊三角形有3條對稱軸,故B選項正確;C.當兩個三角形中兩邊及一角對應相等時,其中如果角是這兩邊的夾角時,可用SAS來判定兩個三角形全等,如果角是其中一邊的對角時,則可不能判定這兩個三角形全等,故此選項錯誤;D.利用SSS.可以判定三角形全等.故D選項正確;故選C.4、D【解析】
根據(jù)實數(shù)大小比較法則判斷即可.【詳解】<0<1<,故選D.【點睛】本題考查了實數(shù)的大小比較的應用,掌握正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)比較大小,其絕對值大的反而小是解題的關鍵.5、B【解析】
由題意可知,等腰三角形有兩種情況:當a,b為腰時,a=b,由一元二次方程根與系數(shù)的關系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B6、C【解析】
先根據(jù)俯視圖判斷出幾何體的形狀,再根據(jù)主視圖是從正面看畫出圖形即可.【詳解】解:由俯視圖可知,幾何體共有兩排,前面一排從左到右分別是1個和2個小正方體搭成兩個長方體,
后面一排分別有2個、3個、1個小正方體搭成三個長方體,
并且這兩排右齊,故從正面看到的視圖為:.
故選:C.【點睛】本題考查幾何體三視圖,熟記三視圖的概念并判斷出物體的排列方式是解題的關鍵.7、C【解析】
用仰臥起坐個數(shù)不少于10個的頻數(shù)除以女生總人數(shù)10計算即可得解.【詳解】仰臥起坐個數(shù)不少于10個的有12、10、10、61、72共1個,所以,頻率==0.1.故選C.【點睛】本題考查了頻數(shù)與頻率,頻率=.8、A【解析】
根據(jù)點所在象限的點的橫縱坐標的符號特點,就可得出已知點所在的象限.【詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【點睛】考核知識點:點的坐標與象限的關系.9、B【解析】
根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側故選B.【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.10、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值≥1時,n是非負數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】567000=5.67×105,【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.11、A【解析】試題分析:利用軸對稱圖形的性質(zhì)得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質(zhì)12、C【解析】
①根據(jù)圖象的開口方向,可得a的范圍,根據(jù)圖象與y軸的交點,可得c的范圍,根據(jù)有理數(shù)的乘法,可得答案;
②根據(jù)自變量為-1時函數(shù)值,可得答案;
③根據(jù)觀察函數(shù)圖象的縱坐標,可得答案;
④根據(jù)對稱軸,整理可得答案.【詳解】圖象開口向下,得a<0,
圖象與y軸的交點在x軸的上方,得c>0,ac<,故①錯誤;
②由圖象,得x=-1時,y<0,即a-b+c<0,故②正確;
③由圖象,得
圖象與y軸的交點在x軸的上方,即當x<0時,y有大于零的部分,故③錯誤;
④由對稱軸,得x=-=1,解得b=-2a,
2a+b=0
故④正確;
故選D.【點睛】考查了二次函數(shù)圖象與系數(shù)的關系:二次項系數(shù)a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥﹣.【解析】
考點:二次根式有意義的條件.根據(jù)二次根式的意義,被開方數(shù)是非負數(shù)求解.解:根據(jù)題意得:1+2x≥0,解得x≥-.故答案為x≥-.14、6【解析】
根據(jù)正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【點睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形是解題的關鍵.15、4.【解析】
|﹣3|+(﹣1)2=4,故答案為4.16、【解析】解:過P作PA⊥x軸于點A.∵P(2,),∴OA=2,PA=,∴tanα=.故答案為.點睛:本題考查了解直角三角形,正切的定義,坐標與圖形的性質(zhì),熟記三角函數(shù)的定義是解題的關鍵.17、【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次都摸到白球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:
∵共有12種等可能的結果,兩次都摸到白球的有2種情況,
∴兩次都摸到白球的概率是:=.
故答案為:.【點睛】本題考查用樹狀圖法求概率,解題的關鍵是掌握用樹狀圖法求概率.18、【解析】
連接AC,過點C作CE⊥AB的延長線于點E,,如圖,先在Rt△BEC中根據(jù)含30度的直角三角形三邊的關系計算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過點C作CE⊥AB的延長線于點E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.合理作輔助線是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點睛】本題考查了圓的綜合題:熟練掌握與圓有關的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì);靈活利用全等三角形的性質(zhì);會利用面積的和差計算不規(guī)則幾何圖形的面積.20、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當a=時,△PAC的面積取最大值,最大值為【解析】
(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個交點,利用根的判別式△=0,即可得出關于m的一元二次方程,解之取其非零值即可得出結論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對稱軸,利用二次函數(shù)圖象的對稱性即可找出另一個交點的坐標;(4)將點A的坐標代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點A、C的坐標,利用待定系數(shù)法可求出直線AC的解析式,過點P作PD⊥x軸于點D,交AC于點Q,設點P的坐標為(a,a2-2a-2),則點Q的坐標為(a,a-2),點D的坐標為(a,0),根據(jù)三角形的面積公式可找出S△ACP關于a的函數(shù)關系式,配方后即可得出△PAC面積的最大值.【詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個交點,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,∴另一交點的橫坐標為2×2﹣4=﹣2,∴另一個交點的坐標為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點P作PD⊥x軸于點D,交AC于點Q,如圖所示.設點P的坐標為(a,a2﹣2a﹣2),則點Q的坐標為(a,a﹣2),點D的坐標為(a,0),∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,∴S△ACP=S△APQ+S△CPQ=PQ?OD+PQ?AD=﹣a2+a=﹣(a﹣)2+,∴當a=時,△PAC的面積取最大值,最大值為.【點睛】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、拋物線與x軸的交點、二次函數(shù)的性質(zhì)以及二次函數(shù)的最值,解題的關鍵是:(2)代入點的坐標求出n值;(2)牢記當△=b2-4ac=0時拋物線與x軸只有一個交點;(2)利用二次函數(shù)的對稱軸求出另一交點的坐標;(4)利用三角形的面積公式找出S△ACP關于a的函數(shù)關系式.21、(1)見解析;(2)DF=【解析】
(1)直接利用等腰三角形的定義結合勾股定理得出答案;(2)利用直角三角的定義結合勾股定理得出符合題意的答案.【詳解】(1)如圖(1)所示:△ABE,即為所求;(2)如圖(2)所示:△CDF即為所求,DF=.【點睛】此題主要考查了等腰三角形的定義以及三角形面積求法,正確應用網(wǎng)格分析是解題關鍵.22、(1),補全條形統(tǒng)計圖見解析;(2)該校學生對“食品安全知識”非常了解的人數(shù)為135人。【解析】試題分析:(1)由統(tǒng)計圖中的信息可知,B組學生有32人,占總數(shù)的40%,由此可得被抽查學生總人數(shù)為:32÷40%=80(人),結合C組學生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A組由12人,由此即可補全條形統(tǒng)計圖了;(2)由(1)中計算可知,A組有12名學生,占總數(shù)的12÷80×100%=15%,結合全校總人數(shù)為900可得900×15%=135(人),即全校“非常了解”“食品安全知識”的有135人.試題解析:(1)由已知條件可得:被抽查學生總數(shù)為32÷40%=80(人),∴m%=28÷80×100%=35%,∴m=35,A組人數(shù)為:80-32-28-8=12(人),將圖形統(tǒng)計圖補充完整如下圖所示:(2)由題意可得:900×(12÷80×100%)=900×15%=135(人).答:全校學生對“食品安全知識”非常了解的人數(shù)為135人.23、證明見解析【解析】
根據(jù)垂直的定義和直角三角形的全等判定,再利用全等三角形的性質(zhì)解答即可.【詳解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB與Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD與△CBD中,∴△ABD≌△CBD,∴AD=CD.【點睛】本題考查了全等三角形的判定及性質(zhì),根據(jù)垂直的定義和直角三角形的全等判定是解題的關鍵.24、(1)38°;(2)20.4m.【解析】
(1)過點C作CE與BD垂直,根據(jù)題意確定出所求角度數(shù)即可;(2)在直角三角形CBE中,利用銳角三角函數(shù)定義求出BE的長,在直角三角形CDE中,利用銳角三角函數(shù)定義求出DE的長,由BE+DE求出BD的長,即為教學樓的高.【詳解】(1)過點C作CE⊥BD,則有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由題意得:CE=AB=30m,在Rt△CBE中,BE=CE?tan20°≈10.80m,在Rt△CDE中,DE=CD?tan18°≈9.60m,∴教學樓的高BD=BE+DE=10.80+9.60≈20.4m,則教學樓的高約為20.4m.【點睛】本題考查了解直角三角形的應用﹣仰角俯角問題,正確添加輔助線構建直角三角形、熟練掌握和靈活運用相關知識是解題的關鍵.25、(1)40(2)126°,1(3)940名【解析】
(1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個組的百分比,據(jù)此即可求得總人數(shù),然后根據(jù)百分比的意義求得a、b的值;(2)利用360°乘以對應的比例即可求解;(3)利用總人數(shù)乘以對應的百分比即可求解.【詳解】(1)學生總數(shù)是24÷(20%﹣8%)=200(人),則a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C組的人數(shù)是:200×25%=1.;(3)樣本D、E兩組的百分數(shù)的和為1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估計成績優(yōu)秀的學生有940名.【點睛】本題考查讀頻數(shù)分布直方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 親子活動問候活動方案
- 親子瑜珈活動方案
- 人與自然類活動方案
- 人壽理賠宣傳活動方案
- 浙江警官職業(yè)學院《工程結構抗震理論與分析》2023-2024學年第二學期期末試卷
- Mn-Ni-X基鈉離子電池正極材料的制備與性能研究
- 龍巖學院《俄語語法四》2023-2024學年第二學期期末試卷
- 河南信息統(tǒng)計職業(yè)學院《影視攝制基礎》2023-2024學年第二學期期末試卷
- 人才春節(jié)慰問活動方案
- 新疆理工學院《馬克思主義政治經(jīng)濟學原理》2023-2024學年第二學期期末試卷
- 《中國腦卒中防治報告(2023)》
- 成人禮活動流程
- 房地產(chǎn)銷售代理合同示范文本
- 外貿(mào)企業(yè)國際貿(mào)易合規(guī)操作手冊
- 第十七章勾股定理數(shù)學活動 教學設計2024-2025學年人教版數(shù)學八年級下冊
- 2024年湖南省普通高中學業(yè)水平合格性考試歷史試題(原卷版+解析版)
- 【中考一模】2025年中考數(shù)學試題及答案(成都專用)
- 《建設工程施工合同(示范文本)》(GF-2017-0201)條款
- 護理乳腺癌疑難病例討論
- 2025年中國石油北京石油管理干部學院招聘10人高頻重點模擬試卷提升(共500題附帶答案詳解)
- 項目管理方法與工具
評論
0/150
提交評論