2023-2024學(xué)年新希望教育中考四模數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年新希望教育中考四模數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年新希望教育中考四模數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年新希望教育中考四模數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年新希望教育中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年新希望教育中考四模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.某小組在“用頻率估計(jì)概率”的試驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗(yàn)最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.?dāng)S一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面朝上”D.?dāng)S一個質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是62.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,43.若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實(shí)數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠14.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計(jì)算兩個圖形陰影部分的面積,可以驗(yàn)證成立的公式為()A. B.C. D.5.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=36.已知A、B兩地之間鐵路長為450千米,動車比火車每小時(shí)多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設(shè)動車速度為每小時(shí)x千米,則可列方程為()A. B.C. D.7.將拋物線y=A.y=-12C.y=-128.某公司有11名員工,他們所在部門及相應(yīng)每人所創(chuàng)年利潤如下表所示,已知這11個數(shù)據(jù)的中位數(shù)為1.部門人數(shù)每人所創(chuàng)年利潤(單位:萬元)11938743這11名員工每人所創(chuàng)年利潤的眾數(shù)、平均數(shù)分別是A.10,1 B.7,8 C.1,6.1 D.1,69.如圖,將含60°角的直角三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°度后得到△AB′C′,點(diǎn)B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π10.如圖,△ABC是⊙O的內(nèi)接三角形,AB=AC,∠BCA=65°,作CD∥AB,并與○O相交于點(diǎn)D,連接BD,則∠DBC的大小為()A.15° B.35° C.25° D.45°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點(diǎn)E,連接BD則陰影部分的面積為____(結(jié)果保留π)12.化簡:=_____.13.如圖,在矩形ABCD中,AB=4,BC=5,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點(diǎn)G,則CG為_____.14.函數(shù)y=中,自變量x的取值范圍是15.為增強(qiáng)學(xué)生身體素質(zhì),提高學(xué)生足球運(yùn)動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊(duì)之間賽一場).現(xiàn)計(jì)劃安排21場比賽,應(yīng)邀請多少個球隊(duì)參賽?設(shè)邀請x個球隊(duì)參賽,根據(jù)題意,可列方程為_____.16.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點(diǎn)C、D與點(diǎn)A、B不重合),M是CD的中點(diǎn),過點(diǎn)C作CP⊥AB于點(diǎn)P,若CD=3,AB=8,PM=l,則l的最大值是三、解答題(共8題,共72分)17.(8分)某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進(jìn)價(jià)比每臺甲種品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺.求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià);該商場擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)為2500元/臺,乙種品牌空調(diào)的售價(jià)為3500元/臺.請您幫該商場設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.18.(8分)為了解中學(xué)生“平均每天體育鍛煉時(shí)間”的情況,某地區(qū)教育部門隨機(jī)調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作統(tǒng)計(jì)圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:(1)本次接受隨機(jī)抽樣調(diào)查的中學(xué)生人數(shù)為_______,圖①中m的值是_____;(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計(jì)數(shù)據(jù),估計(jì)該地區(qū)250000名中學(xué)生中,每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù).19.(8分)深圳某書店為了迎接“讀書節(jié)”制定了活動計(jì)劃,以下是活動計(jì)劃書的部分信息:“讀書節(jié)“活動計(jì)劃書書本類別科普類文學(xué)類進(jìn)價(jià)(單位:元)1812備注(1)用不超過16800元購進(jìn)兩類圖書共1000本;(2)科普類圖書不少于600本;…(1)已知科普類圖書的標(biāo)價(jià)是文學(xué)類圖書標(biāo)價(jià)的1.5倍,若顧客用540元購買的圖書,能單獨(dú)購買科普類圖書的數(shù)量恰好比單獨(dú)購買文學(xué)類圖書的數(shù)量少10本,請求出兩類圖書的標(biāo)價(jià);(2)經(jīng)市場調(diào)査后發(fā)現(xiàn):他們高估了“讀書節(jié)”對圖書銷售的影響,便調(diào)整了銷售方案,科普類圖書每本標(biāo)價(jià)降低a(0<a<5)元銷售,文學(xué)類圖書價(jià)格不變,那么書店應(yīng)如何進(jìn)貨才能獲得最大利潤?20.(8分)一道選擇題有四個選項(xiàng).(1)若正確答案是,從中任意選出一項(xiàng),求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項(xiàng),求選中的恰好是正確答案的概率.21.(8分)如圖,圓內(nèi)接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點(diǎn).求證:PE⊥PF.22.(10分)如圖,在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均在格點(diǎn)上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點(diǎn)D,E在邊CA上,點(diǎn)F在邊AB上,點(diǎn)G在邊BC上,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)E,點(diǎn)G,并簡要說明點(diǎn)E,點(diǎn)G的位置是如何找到的(不要求證明)_____.23.(12分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A坐標(biāo)為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點(diǎn)為N,在x軸上找一點(diǎn)K,使CK+KN最小,并求出點(diǎn)K的坐標(biāo);(3)點(diǎn)Q是線段AB上的動點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);(4)若平行于x軸的動直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.24.如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點(diǎn),與軸交于,直線與軸交于點(diǎn).(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點(diǎn)為,是拋物線上位于對稱軸右側(cè)的一點(diǎn),若,且與的面積相等,求點(diǎn)的坐標(biāo);(3)若在軸上有且只有一點(diǎn),使,求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)統(tǒng)計(jì)圖可知,試驗(yàn)結(jié)果在0.16附近波動,即其概率P≈0.16,計(jì)算四個選項(xiàng)的概率,約為0.16者即為正確答案.【詳解】根據(jù)圖中信息,某種結(jié)果出現(xiàn)的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個球是“白球”的概率為≈0.67>0.16,故A選項(xiàng)不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項(xiàng)不符合題意,擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是“正面朝上”的概率是=0.5>0.16,故C選項(xiàng)不符合題意,擲一個質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是6的概率是≈0.16,故D選項(xiàng)符合題意,故選D.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.用到的知識點(diǎn)為:頻率=所求情況數(shù)與總情況數(shù)之比.熟練掌握概率公式是解題關(guān)鍵.2、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.3、C【解析】

根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關(guān)鍵是熟練掌握:當(dāng)△>0,方程有兩個不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.4、D【解析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗(yàn)證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗(yàn)證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點(diǎn)睛】考點(diǎn):等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).5、C【解析】

試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點(diǎn):分式有意義的條件.6、D【解析】解:設(shè)動車速度為每小時(shí)x千米,則可列方程為:﹣=.故選D.7、D【解析】

將拋物線y=12【詳解】由題意得,a=-12設(shè)旋轉(zhuǎn)180°以后的頂點(diǎn)為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉(zhuǎn)180°以后的頂點(diǎn)為(2,1),∴旋轉(zhuǎn)180°以后所得圖象的解析式為:y=-1故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象的旋轉(zhuǎn)變換,在繞拋物線某點(diǎn)旋轉(zhuǎn)180°以后,二次函數(shù)的開口大小沒有變化,方向相反;設(shè)旋轉(zhuǎn)前的的頂點(diǎn)為(x,y),旋轉(zhuǎn)中心為(a,b),由中心對稱的性質(zhì)可知新頂點(diǎn)坐標(biāo)為(2a-x,2b-y),從而可求出旋轉(zhuǎn)后的函數(shù)解析式.8、D【解析】

根據(jù)中位數(shù)的定義即可求出x的值,然后根據(jù)眾數(shù)的定義和平均數(shù)公式計(jì)算即可.【詳解】解:這11個數(shù)據(jù)的中位數(shù)是第8個數(shù)據(jù),且中位數(shù)為1,,則這11個數(shù)據(jù)為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數(shù)據(jù)的眾數(shù)為1萬元,平均數(shù)為萬元.故選:.【點(diǎn)睛】此題考查的是中位數(shù)、眾數(shù)和平均數(shù),掌握中位數(shù)的定義、眾數(shù)的定義和平均數(shù)公式是解決此題的關(guān)鍵.9、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點(diǎn):1.扇形面積的計(jì)算;2.旋轉(zhuǎn)的性質(zhì).10、A【解析】

根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理可得∠A=50°,再根據(jù)平行線的性質(zhì)可得∠ACD=∠A=50°,由圓周角定理可行∠D=∠A=50°,再根據(jù)三角形內(nèi)角和定理即可求得∠DBC的度數(shù).【詳解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故選A.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),圓周角定理,三角形內(nèi)角和定理等,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、π.【解析】

如圖,連接OE,利用切線的性質(zhì)得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計(jì)算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計(jì)算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點(diǎn)E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點(diǎn)睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了矩形的性質(zhì)和扇形的面積公式.12、【解析】

直接利用二次根式的性質(zhì)化簡求出答案.【詳解】,故答案為.【點(diǎn)睛】本題考查了二次根式的性質(zhì)與化簡,正確掌握二次根式的性質(zhì)是解題的關(guān)鍵.13、【解析】

如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進(jìn)而證明△AEG為直角三角形,運(yùn)用相似三角形的性質(zhì)即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點(diǎn)睛】此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應(yīng)用、射影定理等幾何知識點(diǎn)為核心構(gòu)造而成;對綜合的分析問題解決問題的能力提出了一定的要求.14、x≥0且x≠1【解析】試題分析:根據(jù)分式有意義的條件是分母不為0;分析原函數(shù)式可得關(guān)系式x-1≠0,解可得答案.試題解析:根據(jù)題意可得x-1≠0;解得x≠1;故答案為x≠1.考點(diǎn):函數(shù)自變量的取值范圍;分式有意義的條件.15、x(x﹣1)=1【解析】【分析】賽制為單循環(huán)形式(每兩隊(duì)之間都賽一場),x個球隊(duì)比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊(duì),每個隊(duì)都要賽(x﹣1)場,但兩隊(duì)之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.16、4【解析】

當(dāng)CD∥AB時(shí),PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當(dāng)CD∥AB時(shí),PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M(jìn)為CD中點(diǎn),OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點(diǎn)睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.三、解答題(共8題,共72分)17、(1)甲種品牌的進(jìn)價(jià)為1500元,乙種品牌空調(diào)的進(jìn)價(jià)為1800元;(2)當(dāng)購進(jìn)甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時(shí),售完后利潤最大,最大為12100元【解析】

(1)設(shè)甲種品牌空調(diào)的進(jìn)貨價(jià)為x元/臺,則乙種品牌空調(diào)的進(jìn)貨價(jià)為1.2x元/臺,根據(jù)數(shù)量=總價(jià)÷單價(jià)可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論;(2)設(shè)購進(jìn)甲種品牌空調(diào)a臺,所獲得的利潤為y元,則購進(jìn)乙種品牌空調(diào)(10-a)臺,根據(jù)總價(jià)=單價(jià)×數(shù)量結(jié)合總價(jià)不超過16000元,即可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進(jìn)數(shù)量即可得出y關(guān)于a的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問題.【詳解】(1)由(1)設(shè)甲種品牌的進(jìn)價(jià)為x元,則乙種品牌空調(diào)的進(jìn)價(jià)為(1+20%)x元,由題意,得,解得x=1500,經(jīng)檢驗(yàn),x=1500是原分式方程的解,乙種品牌空調(diào)的進(jìn)價(jià)為(1+20%)×1500=1800(元).答:甲種品牌的進(jìn)價(jià)為1500元,乙種品牌空調(diào)的進(jìn)價(jià)為1800元;(2)設(shè)購進(jìn)甲種品牌空調(diào)a臺,則購進(jìn)乙種品牌空調(diào)(10-a)臺,由題意,得1500a+1800(10-a)≤16000,解得≤a,設(shè)利潤為w,則w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因?yàn)?700<0,則w隨a的增大而減少,當(dāng)a=7時(shí),w最大,最大為12100元.答:當(dāng)購進(jìn)甲種品牌空調(diào)7臺,乙種品牌空調(diào)3臺時(shí),售完后利潤最大,最大為12100元.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用以及一元一次不等式的應(yīng)用,解題的關(guān)鍵是:(1)根據(jù)數(shù)量=總價(jià)÷單價(jià)列出關(guān)于x的分式方程;(2)根據(jù)總利潤=單臺利潤×購進(jìn)數(shù)量找出y關(guān)于a的函數(shù)關(guān)系式.18、(1)250、12;(2)平均數(shù):1.38h;眾數(shù):1.5h;中位數(shù):1.5h;(3)160000人;【解析】

(1)根據(jù)題意,本次接受調(diào)查的學(xué)生總?cè)藬?shù)為各個金額人數(shù)之和,用總概率減去其他金額的概率即可求得m值.(2)平均數(shù)為一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以這組數(shù)據(jù)的個數(shù);眾數(shù)是在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù);中位數(shù)是將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù),或是最中間兩個數(shù)據(jù)的平均數(shù),據(jù)此求解即可.(3)根據(jù)樣本估計(jì)總體,用“每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù)”的概率乘以全校總?cè)藬?shù)求解即可.【詳解】(1)本次接受隨機(jī)抽樣調(diào)查的中學(xué)生人數(shù)為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數(shù)為=1.38(h),眾數(shù)為1.5h,中位數(shù)為=1.5h;(3)估計(jì)每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù)約為250000×=160000人.【點(diǎn)睛】本題主要考查數(shù)據(jù)的收集、處理以及統(tǒng)計(jì)圖表.19、(1)A類圖書的標(biāo)價(jià)為27元,B類圖書的標(biāo)價(jià)為18元;(2)當(dāng)A類圖書每本降價(jià)少于3元時(shí),A類圖書購進(jìn)800本,B類圖書購進(jìn)200本,利潤最大;當(dāng)A類圖書每本降價(jià)大于等于3元,小于5元時(shí),A類圖書購進(jìn)600本,B類圖書購進(jìn)400本,利潤最大.【解析】

(1)先設(shè)B類圖書的標(biāo)價(jià)為x元,則由題意可知A類圖書的標(biāo)價(jià)為1.5x元,然后根據(jù)題意列出方程,求解即可.(2)先設(shè)購進(jìn)A類圖書t本,總利潤為w元,則購進(jìn)B類圖書為(1000-t)本,根據(jù)題目中所給的信息列出不等式組,求出t的取值范圍,然后根據(jù)總利潤w=總售價(jià)-總成本,求出最佳的進(jìn)貨方案.【詳解】解:(1)設(shè)B類圖書的標(biāo)價(jià)為x元,則A類圖書的標(biāo)價(jià)為1.5x元,根據(jù)題意可得,化簡得:540-10x=360,解得:x=18,經(jīng)檢驗(yàn):x=18是原分式方程的解,且符合題意,則A類圖書的標(biāo)價(jià)為:1.5x=1.5×18=27(元),答:A類圖書的標(biāo)價(jià)為27元,B類圖書的標(biāo)價(jià)為18元;(2)設(shè)購進(jìn)A類圖書t本,總利潤為w元,A類圖書的標(biāo)價(jià)為(27-a)元(0<a<5),由題意得,,解得:600≤t≤800,則總利潤w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故當(dāng)0<a<3時(shí),3-a>0,t=800時(shí),總利潤最大,且大于6000元;當(dāng)a=3時(shí),3-a=0,無論t值如何變化,總利潤均為6000元;當(dāng)3<a<5時(shí),3-a<0,t=600時(shí),總利潤最大,且小于6000元;答:當(dāng)A類圖書每本降價(jià)少于3元時(shí),A類圖書購進(jìn)800本,B類圖書購進(jìn)200本時(shí),利潤最大;當(dāng)A類圖書每本降價(jià)大于等于3元,小于5元時(shí),A類圖書購進(jìn)600本,B類圖書購進(jìn)400本時(shí),利潤最大.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用,分式方程的應(yīng)用、一元一次不等式組的應(yīng)用、一次函數(shù)的最值問題,解答本題的關(guān)鍵在于讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列出方程和不等式組求解.20、(1);(2)【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出選中的恰好是正確答案A,B的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;

(2)畫樹狀圖:

共有12種等可能的結(jié)果數(shù),其中選中的恰好是正確答案A,B的結(jié)果數(shù)為2,

所以選中的恰好是正確答案A,B的概率=.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.21、證明見解析.【解析】

由圓內(nèi)接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點(diǎn),繼而可得EM=EN,即可證得:PE⊥PF.【詳解】∵四邊形內(nèi)接于圓,∴,∵平分,∴,∵,,∴,∴,∵平分,∴.【點(diǎn)睛】此題考查了圓的內(nèi)接多邊形的性質(zhì)以及圓周角定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.22、6作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G【解析】

(1)根據(jù)三角形面積公式即可求解,(2)作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G,過G點(diǎn)作GD⊥AC于D,四邊形DEFG即為所求正方形.【詳解】解:(1)4×3÷2=6,故△ABC的面積等于6.(2)如圖所示,作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G,四邊形DEFG即為所求正方形.

故答案為:6,作出∠ACB的角平分線交AB于F,再過F點(diǎn)作FE⊥AC于E,作FG⊥BC于G.【點(diǎn)睛】本題主要考查了作圖-應(yīng)用與設(shè)計(jì)作圖、三角形的面積以及正方形的性質(zhì)、角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)及正方形的性質(zhì)作出正確的圖形是解本題的關(guān)鍵.23、(1)y=﹣;(1)點(diǎn)K的坐標(biāo)為(,0);(2)點(diǎn)P的坐標(biāo)為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點(diǎn)坐標(biāo)代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點(diǎn)C關(guān)于x軸的對稱點(diǎn)C′的坐標(biāo),連接C′N交x軸于點(diǎn)K,再求得直線C′K的解析式,可求得K點(diǎn)坐標(biāo);(2)過點(diǎn)E作EG⊥x軸于點(diǎn)G,設(shè)Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關(guān)于m的解析式,再根據(jù)二次函數(shù)的性質(zhì)可求得Q點(diǎn)的坐標(biāo);(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質(zhì)求得F點(diǎn)的坐標(biāo),進(jìn)一步求得P點(diǎn)坐標(biāo)即可.試題解析:(1)∵拋物線經(jīng)過點(diǎn)C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點(diǎn)為N(1,),如圖1,作點(diǎn)C關(guān)于x軸的對稱點(diǎn)C′(0,﹣4),連接C′N交x軸于點(diǎn)K,則K點(diǎn)即為所求,設(shè)直線C′N的解析式為y=kx+b,把C′、N點(diǎn)坐標(biāo)代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點(diǎn)K的坐標(biāo)為(,0);(2)設(shè)點(diǎn)Q(m,0),過點(diǎn)E作EG⊥x軸于點(diǎn)G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點(diǎn)B的坐標(biāo)為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論